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Turns them to shapes and gives to airy nothing
A local habitation and a name.

(1) Tais memoir in its present form is of the nature of a trilogy; it is divided into
three parts, of which each has its action complete within itself, but the same general
cycle of ideas pervades all three, and weaves them into a sort of complex unity. In
the first is established the validity of NEwron’s rule for finding an inferior limit to the
number of imaginary roots of algebraical equations as far as the fifth degree inclusive.
In the second is obtained a rule for assigning a like limit applicable to equations of the
form 3(az+6)"=0, m being any positive integer, and the coefficients @, b real. In the
third are determined the absolute invariantive criteria for fixing unequivocally the
character of the roots of an equation of the fifth degree, that is to say, for ascertaining
the exact number of real and imaginary roots which it contains. This last part has
been added since the original paper was presented to the Society. It has grown out
of a foot-note appended to the second, itself an independent offshoot from the first part,
but may be studied in a great measure independently of what precedes, and constitutes,
in the author’s opinion, by far the most valuable portion of the memoir, containing as it
does a complete solution of one of the most interesting and fruitful algebraical questions
which has ever yet engaged the attention of mathematicians (*). I propose in a subse-
quent addition to the memoir to resume and extend some of the investigations which
incidentally arise in this part. The foot-notes are numbered and lettered for facility of
reference, and will be found in many instances of equal value with the matter in the
text, to which they serve as a kind of free running accompaniment and commentary.

(M I owe my thanks to my eminent friend Professor D Moraax for bringing under my notice, in a marked
manner, the original question from which all the rest has proceeded. As all roads are said to lead to Rome, so
I find, in my own case at least, that all algebraical inquiries sooner or later end at that Capitol of Modern
Algebra over whose shining portal is inscribed * Theory of Invariants.”
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680 PROFESSOR SYLVESTER ON THE REAL

Pirr I.—ON NEWTON’S RULE FOR THE DISCOVERY OF IMAGINARY ROOTS.

(2) In the ¢Arithmetica Universalis,” in the first chapter on equations, NEwToN has given
a rule for discovering an inferior limit to the number of imaginary roots in an equation
of any degree, without proof or indication of the method by which he arrived at it, or the
evidence upon which it rests(*). MACLAURIN, in vol. xxxiv. p. 104, and vol. xxxvi. p. 59
of the Philosophical Transactions, CaMPBELL(®) in vol. xxxviii. p. 515 of the same, and
other authors of reputation have sought in vain for a demonstration of this marvellous
and mysterious rule(*). Unwilling to rest my belief in it on mere empirical evidence, I

(®) It appears to be the prevalent belief among mathematicians who have considered the question, that
Newron was not in possession of other than empirical evidence in support of his rule.

(®) CamprELL’s memoir is rather on an analogous rule to NEwroN’s than on the rule itself, to which he refers
only by way of comparison with his own. In it the same singular error of reasoning is committed as in the
notes of the French edition of the ¢ Arithmetica,” viz. of assuming, without a shadow of proof, that if each of a
set of criteria indicates the existence of some imaginary roots, a succession of sets of such criteria must indicate
the existence of at least as many distinct imaginary pairs of roots as there are such sets (see par. at foot of
p- 528, Phil. Trans., vol. xxxv.)—much as if, supposing a number of dogs to be making a point in the same
field, the existence could be assumed of as many birds as pointers.

(*) Mr. Arcrarsarp SurrH has obligingly called my attention to WARING’S treatment of the question of New-
ToN’s rule in the ¢ Meditationes Analyticee.” On superficial examination the reader might be induced to suppose
that in part 9, p. 68, ed. 1782, Warine had deduced a proof of the rule from the preeeding propositions ; but on
looking into the case will find that there is not the slightest vestige of proof, the rule being stated, but without
any demonstration whatever being either adduced or alleged. In fact, on turning to the preface of this (the
last) edition of the ¢ Meditationes,” the reader will find at p. 11 an explicit avowal of the demonstration being
wanting, After referring in order to Camesrrr’s, MacrAvrIN’s, and Newrox’s rules, as well as his own, for
discovering the existence of impossible roots, he adds these words:

¢ At omnes ha regule pradicte perraro invenerunt verum numerum impossibilium radicum in sequationibus
multarum dimensionum et adhuc demonstratione egent ; vulgares enim demonstrationes solummodo probant impos-
sibiles radices in data sequatione contineri, non vero quod saltem tot sunt quot invenit regula.”

“ Vera resolutio problematis est perdifficilis et valde laboriosa; cognitum est radices ex possibilitate per
equalitatem transire ad impossibilitatem ; ergo in generali resolutione hujusce problematis necesse est invenire
casum in quo radices date sequationis evadunt sequales; resolutio autem hujus casus valde laboriosa est; et
consequenter resolutio generalis preedicti problematis magis erit laboriosa.”

‘Written in Latin, and when the proper language of algebra was yet unformed, it is frequently a work of
much labour to follow Warine’s demonstrations and deductions, and to distinguish his assertions from his
proofs. I find he agrees with the opinion expressed by myself, that Newrox’s rule will not “pene,” as stated
by Newron, but only “ perraro,” give the true number of imaginary roots. Like myself, too, in the body of the
memoir WarINe has given theorems of probability in connexion with rules of this kind, but without any clue
to his method of arriving at them. Their correctness may legitimately be doubted.

[Since the above was sent to press, I have been enabled to ascertain that the great name of Evrer is to be
added to the long list of those who have fallen into error in their treatment of this question: see Institutiones
Calculi Differentialis, vol. ii. cap. xiii. He says (p. 555, edition of Prony), ¢ videndum est utrum heze duo
criteria (meaning NEwTon’s criteria of imaginariness) sint contigua necne; priori casu numerus radicum
imaginarium non augebitur; posteriori vero quia eriteria litteras prorsus diversas wnwolvunt, unumguodque
binas radices imaginarias monstrabit.”

The force of the supposed argument is contained in the words in italics. It is sufficiently met by the ques-
tion, why or how the conclusion follows from them ? Moreover the letters of two non-contiguous criteria are not
necessarily prorsus diversee; for two criteria with but a single other intervening between them will contain
one letter in common. ]
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have investigated and obtained a demonstration of its truth as far as the fifth degree
inclusive, which, although presenting only a small instalment of the desired result, I am
induced to offer for insertion in the Transactions in the hope of exciting renewed atten-
tion to a subject so intimately bound up with the fundamental principles of algebra.

Before commencing the inquiry I ought to state that, in addition to the rule for
detecting the existence of a certain number of imaginary roots, NEwToN has given a
remarkable subsidiary method for dividing this number into two parts, representing
respectively how many of the positive and how many of the negative roots indicated by
DEescarres’s rule are, so to say, absorbed, and thereby obtains two distinct limits to the
number of positive and the number of negative roots separately: of the grounds of this
method, as far as I am aware, no one has even attempted an explanation, nor do I pro-
pose here to enter upon it; therule, as I treat it, may be stated, not in NEwToX’s own
words, but most simply as follows :—

If the literal parts of the coefficients of an equation affected with the usual binomial
coefficients be a, b, ¢, d, e...h, k1, and if we form the successive criteria b*—ac; *—bd;
d—ce; ...; K2—hl, or, which is the same thing differently expressed, if we write down
the determinants(®) of all the successive quadratic derivatives of the given equation, then
as many sequences as there are of negative signs in the arithmetical values of these criteria,
so many pairs of imaginary roots at least there will be in the given equation. If we
choose to consider ¢* and /* also as criteria, appearing at the beginning and end of the
series, then we may vary the expression of the rule by saying that there will be at least
as many imaginary roots as there are variations of sign in the complete series so formed.

It will, however, be found more convenient for our present purpose to confine the
designation of criteria to the determinants above alluded to.

(3) 1 shall deal with the homogeneous equation f{, #)=0 so that the question of the

reality of the roots is that of the reality of the ratios g or % It is obvious, from known
principles, that f' cannot have fewer imaginary roots than exist in % for ;% F(%), or, more

‘generally, than in (%—I—l gy—) J'; from which it immediately follows (") that if f have all its
roots real, and the quadratic derivatives of f be called Q, , Q,, .... Q,_,, and the coeffi-

(®) To avoid the possibility of misapprehension, I state here once for all, that in the discriminant of a form of
any degree I suppose the sign to be so taken as to render positive the term which is a power of the product of
the first and last coefficients ; and it may be well to remember that with this definition the number of real roots
in any equation =0 or 1 to modulus 4 when the discriminant is positive, and =2 or 3 when the discriminant
is negative; whereas the Determinant of a Quadratic form is to be taken in the same sense as that in which
it is used by Gauss, and is the same for such form as the Discriminant with the sign changed.

(®) This rule I find merges in the following more general and symmetrical one. Let f, ¢ be any two quan-
ties in @, y; call the Jacobian of £, ¢ J; then the difference between the number of real roots in fand the like
number in @, taken positively and augmented by unity, cannot exceed the number of real roots in J.  When ¢

is made equal to y, this theorem recurs to the familiar one alluded to in the text.

(") By operating upon # successively with any (n—2) distinet factors each of the form (% + A—d—) :

‘dy
412
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cients of any function F of two degrees lower than f, whose roots are also al] real, be
Pis Poy -ovr Puy, the quadratic function p,Q,4+p,Qy+ ... +p,-,Q,—, must have its roots
real, 4. e. its discriminant must be positive: a particular consequence of this is, that by
causing F to consist successively of the single terms 2”2, "%, .... 2y"~%, y"* we see
that the determinants of Q,, Q,, ... Q,_, must each of them be positive; or, in other
words, if any of the Newtonian criteria of an equation are negative, it must have some
imaginary roots, which is all that MacLAURIN, CAMPBELL, and others have succeeded in
proving.

(4) The labour of proof of the cases hereinafter considered will be much lightened by
the following rule of induction, viz., granting NEWTON’S rule to be true for the degree
n—1, it must be true for all those cases appertaining to the degree » in which the series
of the signs of the criteria does not commence with — < and end with 4—: to prove
this, we have only to remember that f must have at least as many imaginary roots as

% or %, and that the criterion-series corresponding to % and to % will be found by

cutting off from the series of f one term to the right and left respectively(®). If, now,
the series for f begins with 4+ -4 or —— or 4—, the number of negative sequences is
the same as when the left-hand sign is removed ; so that it is only necessary to prove that
the number of imaginary roots in f'is not less than the number of negative sequences in

in % , and, & fortiori, not\greater than the number of such in f. In like manner, if

the two last criteria of f are not +—, it may be shown that the truth of the rule for
.
dy

‘We may therefore limit our attention, as we ascend in the scale of proof, to those
forms of £ in which the criterion-series begins with —~ and ends with +—. Accord-
ingly, since the rule is a truism for n=2, it is at once proved, by virtue of the above
considerations, for n=3(°).

d%'; but this, by hypotl\lgsi\s, is not greater than the number of pairs of imaginary roots

such form of f'is implied in what is supposed to be known to be true for

() For ‘ %(a, by oo by D, yP=n(a, b ...k Ya,y)?,
and

d
@y (a8, o & Dw,yY=n( b,...k Oa,y)"
(®) The theorem for the case of cubie equations may be also proved directly as follows:
Writing the equation ax®-+3ba*y+3cay®+dy*=0, the two criteria are L=>3*—ac, M=c*—bd ; and the
diseriminant is «®d? 4 4ae® 4 4db® —3b*c® — Babed = A.
1. Let L and M be of opposite signs, so that one and only one of them is negative. Then
A= (ad—bc)* —4(b*—ac)(c*—bd) = (ad —bc)* —4LM,
and is therefore positive. ‘
2. Let L and M be both negative. The equation may evidently, by writing # and y for a3z, déy, be brought

under the form 2° +35x2y + 3‘4@2 +y3 —_ 0’

with the conditions £2<, y*<te; from which we may deduce that & and ¥ are both positive, and ey<1 and >0.
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If all the criteria are zero, it is evident that, whatever » may be, all the roots are real.
In every other case we shall find that zero may be made positive or negative at will.
Thus in the case before us, if the two criteria are 0+ or 0—, there will be a pair of
imaginary roots, as the first may be read as — - and the second as 4 —.

af

To prove this, we have only to observe that in either case - will have two equal roots;

so that ' will be of the form (ax4-by)*+cy’, which obviously, for any real values of
@, b, ¢, has only one real root.

(5) We may now pass to the case of n=4, and excluding for the moment the con-
sideration of zeros, limit our attention to the criterion series — 4 —.

Let axt+44b2°y+6ca*y*+4dxy*4-ey*=0 be the equation for which the signs of the
criteria §*—ac, ¢*—bd, d*—ce are —-+—. Call these criteria L, M, N respectively. It
has to be proved that all four roots are imaginary, since there are two distinct negative
sequences, each sequence consisting of a single —. Let 2 become 2y (*°), where ¢ is
an infinitesimal quantity, and transformed into one between # and y; then we have

bviously,
obviously da=0, db=as, dc=2bs, dd=3cs, de=4ds,

SL=2b0b—adc=0, IM=2¢dc—0bdd— ddb=(bc—ad)e,
FM=(bdc+ cdb—add)e=2(b*—ac)e’ =21¢*;
so that &M is essentially negative, since L is so.
Hence, by continually augmenting # by an infinitesimal variation, we may, leavmg L

unaltered, so choose the sign of ¢ as to decrease M : nor can this process stop when b¢c —ad
becomes zero, by reason that 3M is negative. Hence we may reduce M to zero. Now,

Also we have
A=144(+9%)— Bey—8e™y”
>144(s+9)en— 6ey—3e’y”
>1—6ey+8(ex)E—3ey*
or, writing en=¢", A>1—6¢>+8¢°—3¢",
>(1—¢YA+39);
but 1>¢=0. Hence A is positive.

Hence in either case two of the roots of the cubic are impossible. Or the same thing may be shown more

immediately from the identities

?A=(a’d + 2b°—Babc)* + 4(ac—0b%)?,

PPA=(ad?+2¢*—3bed)® + 4(bd— c*)?,
50 that A must be positive, and therefore two roots imaginary, if either bd>¢* or ca=?3?. It may be noticed
that the square and cube in these identities are semi-invariants, being in the first of them unaffected by the
change of « into #+ Ay, and in the second by the change of y into y 4 ha.

(*) This method of infinitesimal substitution is that which I applied in my memoir “On the Theory of Forms,”
in the Cambridge and Dublin Mathematical Journal, to obtain the partial differential equations to every possible
species of invariants (including covariants and contravariants) of forms, or systems of forms, witha single set or
various sets of variables, proceeding upon the pregnant principle that every finite linear substitution may be
regarded as the result of an indefinite number of simple and separate infinitesimal variations impressed upon
the variables. M. Arowmorp has erroneously ascribed to others the priority of the publication of these equations.
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in the course of this reduction, either N retains its sign or changes it; and if the latter
is the case, N must have passed through zero. If when M becomes zero N is still nega-
tive, the criteria of the linearly transformed equation become —0—; and it may be
noticed that its first, middle, and last coefficients must have the same sign, by virtue
of the negativity of the two last criteria, and the second and fourth the same signs, by
virtue of the zero middle criterion; consequently the equation will take the form

(A + )t L4’ e’y +beeaty* + deay® 4 (' ¢ )y =0,

Wat+pryt 4 (evtey)' =0,
which obviously has all its roots impossible. This being true of the transformed equa-
tion, will also, on the suppositions made, be equally so of the original equation.
Let us next suppose that N changes its sign either at the instant when, or before M

becomes zero. If M and N both become zero together, so that the criteria of the

dF

transformed equation bear the signs — 0 0, calling the transformed equation F=0, &

will have all its roots equal, and F will therefore be of the form (ax-by)'+Fka*, with
the condition (¢*6)’— (a*+%)(a**) < 0.

Hence % is positive, and consequently F=0 has all its roots imaginary; and the same,
as before, must hold good of the original equation f=0.

It remains then only to consider the case when N becomes zero before M vanishes.
‘When this is the case, as soon as N is reduced to zero, in lieu of the substitution of
x+ey for x, we must leave & unaltered, and continue substituting y--ex for y. We
thus start from the sequence —-0; N will then always remain zero, and we must
either come to the series — 0 0, which we know, from what has been shown above, cor-
responds to four imaginary roots, or to the sequence 040, which I shall proceed to

or

consider.
Since the first and last coefficients must have the same sign, we may, by giving
either variable a proper multiple ("), make these two coefficients alike, and with the first,

™) (*) The form ( 1, ¢ & ¢ 1Y, y)* may be regarded as a new and, for many purposes, useful canonical
form of a binary quartic. It may be made to comprise within its sphere of representation all forms correspond-
ing to two or four imaginary factors, but excludes the case of four real factors. The ordinary canonical form
(1, 0, 6m, 0, 1Y@, y)* comprises within its spheres of representation those forms for which the factors are all
real or all imaginary, but, so far as real transformations are concerned, excludes the case of two real and two
imaginary factors [that case is met by the form 1, 0, 6m, O, —13[.73, y)“l as may easily be established either
by decomposing the form first named into its factors, or by the consideration that its discriminant A is
(1—9m?*?, and is therefore always positive; whereas if a form which it is used to represent have two real
and two unreal factors, its discriminant is negative. If now the determinant of transformation be D, and the
discriminant corresponding thereto be called A’, we have A'=D°A, showing that D? is negative, and the trans-
formation therefore unreal.

(*) The reality of m for each of these cases (usually assumed without proof) may be demonstrated as follows:
Calling the cubicinvariant and the discriminant of any cubie form T, D, we shall have, using the ordinary canonical

—m¥? T2
form, '(%ﬂi—_;;?))“’=f’ showing that when D is positive, which is the case of four real or unreal factors, there will
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second, and third, as well as the third, fourth, and fifth coefficients form geometrical
series; hence it is obvious that the transformed equation may be reduced to one or the
other of the two following forms, viz.

at+tdeaty + 62y —dexy +y'=0, . . . . . . . . (a)
x*+4ea’y + 66’2y +dexy’ +y'=0, . . . . . . . . ()
with the condition in the latter case that ¢*—¢* is positive, . e. ¢ >1.

or

be one real value of m, and when D is negativé, a real value of #m. The former case possesses over the latter a
striking distinction, which is that a?l the roots of m will be real ; for, as T have shown elsewhere, if m is one root

—2 142m .
the complete system of roots will be +m, + 1_'_37;: , + 1i 3::: in the latter case the reality of the two values

+4m does not seem necessarily to imply the reality of the other 4 values of the system.

(°) Analogy suggests the establishment of an analogous canonical form or forms for ternary cubics, of which,
as is well known and is even dimly foreshadowed in NEwron’s Enumeration of Lines of the Third Order, the
theory runs closely parallel to that of binary quartics. This will be effected by assuming the form

F(z, y, 2)=2a+3eZa’y + bgayz,
and assuming ¢ so as to make the discriminants of

L

de dy dz
all zero. This gives rise to a quadratic equation in g, of which the roots are g=¢, g=2¢*—¢. When g=¢, I find

S=e¢(l—e), T=(l—e)'(1+4¢—8¢), A=T"+64F=(1+8e)(1—e)% :

When g=2¢*—e¢, I find A=(1—-e)i(1—4e)/(1+2¢)%, where 4, j, & are integers to be determined. These forms
will, I think, be found important in the future perspective discussion of curves of the third degree. Whilst I
yield to no one in admiration of the surpassing genius with which Newron has handled these curves, I cannot
withhold the expression of my opinion that every theory of forms in which invariants are ignored must labour
under an inherent imperfection, and that Newron, from want of acquaintance with the indelible characters which
their invariants stamp upon curves, has in the parallel which he has drawn between the generation by shadows
of all conics from a common type, and of all cubic curves from a limited number of forms, either himself fallen
into error of conception, or at least used language which could scarcely fail to lead others into such error. For
no species whatever of cubic curve can be formed for which an infinite number of individuals cannot be found
which defy linear or perspective transformation into each other; whereas all conics proper may be propagated
as shadows from a single individual. It should be noticed in connexion with this subject, that the indelible

3
characters of quartic binary, and cubic ternary forms are two in number, viz. the value of ';—2 (where s, ¢ are the
two fundamental invariants in either éase) and the sign of . The indelibility of the sign of s being implied in
. :
the invariability of the value of :_2 , does not constitute a distinct character. Of course all symmetrical invariants

have an invariable sign ; but this isnot the case with skew invariants, as ex. gr. M. HErMITE’S 0ctodecimal inva-
riant of & binary quintic, which will change its sign with that of the determinant of transformation.

(%) Whilst upon this subject of invariants, I may allow myself to make a remark bearing upon what will be
noticed further on in the text about a case of equality between roots not necessarily being a mark of transition
from real to imaginary roots. If a, b, ¢, d being the roots of a binary quartic we form a’secondary cubic, of
which the roots are (a—b)(¢c—d), (¢—c)(d—>), (a—d)(b—c¢), it may be easily shown that two of these quan-
tities become equal, or, in other words, the roots of the original equation mark out a harmonic group of points
when ¢ (the cubinvariant) is zero. Notwithstanding which a change of sign in ¢ will not command a change of
character in the above three roots of the secondary (nor consequently of the original equation), because it is not
an odd but an even power of ¢, viz. ¢, which enters into the discriminant of the secondary.
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It must be remembered that we know, from the form of the criteria-series to the
derivatives in respect to either # or y (indifferently), that the equation must have some
imaginary roots; and the question therefore lies between its having two or four. If the
discriminant is negative, the former will be the case, if positive, the latter. 1shall show
that in each equation the discriminant is positive.

Let s, ¢ represent in general the quartic invariants, then we have to show that s*—27¢
is positive.

In case (@), s=1+ 464 3¢t t= |1 e | =—e¢'— ¢—er—f—¢
| =(14¢)(143¢*) e —e| = ——2¢—¢°
f—e 1| = —a(1+¢),
so that

$—2T8=(1— ) {(1+ 3¢ — 27" (1+-¢")} =(L+-e)(1 4 9¢2),
and is positive. ’

In case (%),
s=(1—4¢’+3¢")=(1—¢’)(1—3¢*)

1 e &
= |e & ¢ =6+t —*—f—¢
fo 1l =—+42¢'—=—(1—¢"),

and
§—2Te=(1—¢*)((1—3¢")—2Te(1—e))
=(1—&)(1—9¢).

The above can only be negative when ¢ lies between 1 and % ; but in the case supposed
¢>1. Hence the discriminant is positive, and the roots are all imaginary(**). Thus,
then, the theorem is established for n=4, as well as for the cases where the criteria
are zero (as will have been observed in the course of the demonstration), as for those
where they are plus or ménus ; and it should be observed that the demonstration proceeds
upon our being able to show that the quartic, in the case where it resists reduction to
the case of the cubic, viz. where the criteria are negative at the two extremes and positive
in the middle, may by real linear transformations be changed into a form where either
the middle criterion is zero and the two extremes negative, or the two extremes zero,
and the middle one positive.

(%) The reader conversant only with ordinary algebra may easily verify this result. For writing £+Y=,
. Y @

the equation becomes 2°--4ez 4 66—2=0, and this will have its roots impossible unless 46> 6e?—2, or 2¢*—2
negative, which it cannot be, since ¢>>1, and consequently @ :y has all its roots impossible. Moreover
the same conclusion would (as before shown) hold good unless ¢* lay between 1 and L; for on making z=2,
the function above written in 2z becomes 2+48¢+6¢%, or 2(1+¢)(L+8¢); and making z=—2, it becomes
2—8¢+ 66", or 2(1—e)(1—3¢), which two quantities evidently have both positive signs unless ¢ lies between
1and }, or between —1 and —%; so that the first and third Sturmian functions are (except on that supposition)
respectively positive and negative for z=2, and also for z=—2, showing that no root of z can lie between
2 and —2, and consequently that all the roots of & : y remain impossible.
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Observation.—To make the foregoing demonstration quite exact, it should be noticed
that when the criteria L, M, N have been brought to the form — -0, and the series
of substitutions of y+¢ & for y has set in, we have

N=0, N=0, 3M=(cd—be)s, M =Ne=0, 3*M=0.
Consequently if ed—be should become zero, we can no longer go on decreasing M. But
as soon as cd—be=0, since we have also d*=ce, b, ¢, d, ¢ come to be in geometrical pro-
gression, and the transformed equation takes the form
ar'+dwr’y 672y + 4o’ ry’ + w'a* =0,
with the condition «*—aw® negative, or ¢ >1. Hence we have ¢*+*+(2-+wy)*=0, which
obviously has all its roots impossible (**). |

(6) We may now pass on to equations of the fifth degree, in which the case resisting

induction will be that where the criterion-series bears the signs

-+ + -
Let the criteria be called L, M, N, P, so that writing the equation

a4 5bx'y+10cay* 4+ 10da’y* 4+ Sexy' 4 fiy* =0,
L=#—ac, M=c*—bd, N=d*—ce, P=e—df,
and writing for &, £4-¢y, we have, as before,
0L=0, ®M=(bc—ad), > M=Le,
so that M may be continually diminished.

If M becomes zero before either N or P changes its sign, the criterion-series for the
transformed equation becomes — 0 4+ —, and for its derivative in respect to &, the series
is 0 + —, which proves the existence of four imaginary roots in the transformed, and
consequently also in the given equation. In like manner, if N becomes zero before M
or P have changed their signs, the criterion-series becomes — + 0 —, which obviously
leads to the same result. So likewise the same inference may be drawn if L and M, or
M and N, or L, M, N become zeros all at the same time, and we have only to consider
the case when, L and M retaining their signs, N becomes zero. At this moment the order
of the substitutions must be reversed, and for y must be written y--:2; we shall then have

P=0, 8P=0, ®N=(de—cf)...... ;

rom the first and third criteria it follows that in the form (e, b, ¢, d, e} 2, v)*, @, ¢, ¢ have the same si
13) From the first and third criteria it follows that in the f b,¢,d y)* have th ign

2 2
and may be regarded as all positive; so that writing a-—;:h“’, e-—-;:kg, the form becomes A%z*+F+ k%2,

where .
=o'+ 4o’y + bcx“’y’+4dxy3+%2 yh

and consequently the given form will have all its roots imaginary when this is true for F, so that we might
have proceeded at once to deal with the forms marked (), (b) at p. 585; but as the method of homographie
transformation by infinitesimal substitutions appears to be necessary in passing to the corresponding forms
in the case of the fifth degree, and as in treating that case reference is made to what appears above, I have
thought that no object would be gained by altering the text.

MDCCCLXIY. 4K
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and reasoning as in the preceding case for n=4 (with the sole difference, that if SN
vanishes by virtue of de—¢f vanishing, we should have P=0, N=0, and the criterion-
series — -4 0 0, which at once indicates the existence of four imaginary roots), we see
that there remains only to consider the case where the criterion-series takes the form
0 4+ + 0. It is scarcely necessary to observe that all the criteria can never vanish
simultaneously; for that would indicate the equality of all the roots in the transformed,
and therefore in the given equation, whose own criteria, contrary to hypothesis, would
alsobe all zero. The zero values of the two extreme criteria indicates that the three first
and the three last literal parts of the coefficients are in geometrical progression, from
which it will immediately be seen that the equation to be considered may be thrown (by
substituting in lieu of # and y suitable multiples of # and y, which will not affect the
characters of the criteria) into the convenient form

@' 4-Beaty 4+ 100"+ 107"+ bnay* +-y°=0,

with the two conditions e*—es* positive, 5*—ne® positive.

The form of the criterion-series, apocopated from either end, shows that two of the
roots must be imaginary; and consequently, in order to establish the existence of two
imaginary pairs of roots, it is only necessary to show that the discriminant of the above
equation, subject to the above conditions, must remain always positive. That discrimi-
nant I proceed to determine; but as a guide to the form under which it is to be
expressed, the following observation is important. Let us take the more general form
ax’+-ba'y+ca’y*+ dayP 4 exy* +fy =0,
where

a=1, b=h, Co=pd, d=pr, e=M, f=I1,

A, @ being any numerical quantities.
The discriminant will evidently be a symmetrical function of ¢ and e.

Let a*b'c’d’¢’ be the literal part of any term in the discriminant. By the law of weight

we must have :
q+2r 4 3s-+-4t=>5 x 4=20.

But in the equation before us, a?6%¢’d’¢’ (to a numerical factor prés) is e+*%**, and

(¢+2r)—(2s+2)=(g+2r+3s+4-4¢)—5(s+)
=5(4—s+1).

Hence the difference between the indices of ¢ and 7 in each term is a multiple of 5,
and consequently, since the discriminant is a symmetrical function in ¢ and 7, it will be
a rational integral function of ¢+»° and en. Moreover, as no such term as ¢'d* can figure
in the discriminant, which, as we know, must in all cases contain one or the other of the
two final and of the two initial coefficients, we see that no term can be of higher than
the 14th degree in ¢, 4, nor yet so high, for the only terms that could be of that degree
would be b¢*d’¢; but making @ and f each zero in the original form, it becomes obvious
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that all the terms free from ¢ and f contain 4% as a factor(*). Hence, in fact, the
discriminant will be only of the twelfth degree in ¢, 7, and being therefore of only the
second degree in ¢ -7°, will admit of comparatively easy treatment.

(7) Before proceeding to the calculation of this discriminant, it will be useful to
investigate, as a Lemma ancillary to the subsequent discussion, under what conditions
four of the roots of the supposed equation will become imaginary when ¢=.

In this case writing Z—l—%:z, the equation

a;:l_—l(l, g &, &, ¢ 1Y, y)°’=0
becomes

2’—2—2+4+140¢(2—1)+10=2"4(6e—1)z 410" —9e—1=0,
or say fz=0.

The determinant of f{z) is thus (56—1)*—40e*+20¢+7, i. e. 5(1—e)(1+3¢); and all
the roots of z, and consequently of (2, y), will be impossible, unless z lies between
1 and —3. '

Now J(2)=1+4be+10¢,

F(2)=38+b¢;
so that when z has any real roots, i. ¢. when ¢ lies between 1 and —3, f(2), f'(2) are
both positive, and the Sturmian functions are of the signs 4+ +.

Again,
J(—2)=5—15:+10e=5(1—¢)(1—2¢),

f’(—2)=—5+5e;
so that, on the same supposition as before, the Sturmian functions are 4+ — 4, viz.
+—+ when 3 >¢> —3,
——+4 when 1>¢>1.
In the former case two real roots, in the latter one real root of z lies between 2, —2.
Hence in the former case no real roots of z lie between the limits oo, 2, and the limits
—2, — oo, and in the latter case one real root lies between those limits. Hence @, y
will have four imaginary roots, unless ¢ lies between 1 and %, and two such roots in
every other case.
Thus the discriminant of (1,¢, &%, 7%, 7, 1, y)°, when ¢=7, is negative when ¢ lies be-
tween 1 and %, but for every other value of ¢ is positive, save that it vanishes when
=1, or e=%(*), or e=—3.
(8) I now proceed to calculate the discriminant of the form
&°+ Sexty + 10£2%y* + 107°0%y° + Sy +y°

(**) Forthe discriminant of xy¢(#, y) =the discriminant of p(«, ) multiplied by the square of the product of
the resultant of (z, ¢) and of (y, ¢).
(*) When e=} the discriminant of f{(z) does not vanish, but z==—2 satisfies the equation in z, and con-

sequently ‘g has two equal roots —1, so that the diseriminant of the original equation vanishes.

4K 2
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for general values of ¢, 7. This will be accomplished most expeditiously by taking the
resultant of the two derivatives of the above form, say U and V, where
U=a'+4ea’y + 6°2°y + o'y + ',

V=ea'+40%y+ 67’2y + dnzy*+y* 5
so that

U=V  =6(—n)a*y*+4(e* —n)ay’+(en—1)y'=y’P,

—U+4V=(an—1)a*+4(ne*—¢)2’y+ 6 (r* —&*)a’y*=2"Q.
Hence

Resultant of (U, V)= (ET];—E‘IX Resultant of (y°P, 2°Q)= Resultant of (P, Q);
where
P=06(¢—7n")a*+4(en* —n)xy+(en—1)1,
Q=(en—1)2"+ 4(n®—¢)ay + 6(r* — ).
Hence, calling A the discriminant of the original form, we obtain by the well-known
formula for the resultant of two binary quadratics, writing for the moment
P=(B, 47A, AYx, y)’, Q=(A, 4:A, B'Yx, y),
A=(4¢A>—42AB')(42A*—4:AB)+(A*—BB')?
=(1—16e7)A*+16(¢’B+#"B')A*—16¢#BB'A*>—2BB'A*4-B*B".
Hence writing en=¢q, ¢-+7"=S,
A=(1-16¢)(¢—1)'+96(S—2¢")(¢— 1= 72(8¢+1)(¢'+¢"—S)(¢—1)"
+36%(¢"+¢°'—S)"
Let S—¢*—¢*=0, ¢g—1=p, so that
S—2¢=0—g"+¢'=c+(p+1)’p.

Then
A=36%"+T72(8p+9) p*+ 96p°c 4 96( p+1)*p*— (16p+15)p
— 12965+ (648p*+672p°)6+96p° - 176p°+81p",
=3{1080+27p*+428p*)*+729p* +1584p°+ 86 4p° — (2Tp*+28p°)*},
or

9A=(108¢+27p*4-28p* )+ T2p°+80p°.

(9) Hence we see at once that A can be negative only when p lies between 0 and
—1%> @ ¢. when ¢z (which is p+1) lies between 1 and {%5. Accordingly when A is
negative, ¢ and 7 must be both positive or both negative. The latter supposition may
easily be disproved as follows: treating the equation A=0-as a quadratic equation in ¢,

in order that A may be capable of becoming negative, its discriminant in respect to &
must be negative, and its value when ¢=— 0 is positive. Now

S=é+7, pt+l=em, o=S—(p+1)—(p+1);
so that when ¢ and 7 are real we have
8>2(p+1)i("), i e. 0> —(p+1P+2(p+1)i—(p+1)
(*%) It is of course understood that ( p+1)% is to be taken positive.
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when ¢, 5 are both positive, and

S<—2(p+ 1), i e s<(p+1)P—(p+1P—2(p+1)t
when ¢, # are both negative.

If now we substitute (p+1)24+(p+1)°*—2(p41) for ¢ in A, I say that the resulting
value will be positive whatever positive value be given to (p-41); in fact, if we write
p=r*—1, and make o= —»*+2°—)5 so that A becomes a function of the twelfth degree
in », this function is what the discriminant of the equation in #, y becomes when we
have e=7=v; but in the antecedent Lemma it has been shown that this discriminant is
only negative when the two equal quantities ¢ or #, or, which is the same thing, when »
lies between 1 and £ ; hence A is positive when » is negative, and consequently when

o=(p+1)+(p+1)—2(p+1).
Thus A, a quadratic function in ¢, and its discriminant are respectively + and — for
this value of ¢, as well as for s=—oco. Hence no real root of ¢ lies between such value
of ¢ and —, , and consequently A must be always positive when ¢ and  are both negative.
Hence, if A is negative, we must have 1 >e>5; ¢>0; 2>0. But our criteria give
e—ef >0, 7'—n>0,

which, when ¢>0, 7> 0, imply ¢>#?, s*>¢, and consequently e >1, which is in con-
tradiction to the inequality 1>¢7. Hence when these criteria are satisfied the determi-
nant is necessarily positive, and all the roots are imaginary, which completes the proof
of NEwToN's rule for equations of the fifth degree.

(10) It follows as a corollary to the Lemma employed in the precedlng investigation,
that if in A we write 6=—(»*—»*)* and p=y"—1, and distinguish this particular value by
the symbol (A), then (A) ought to break up into the product of odd powers of v—1, y—3
of some even power of (v+4), and of a factor incapable of changing its sign, and remain-
ing always positive. This may be easily verified ; for dividing (A) by (v—1)*, we obtain

1296)°(648(s+1) +24(*—1)(v+ 1))+ 96(*— 1)*(o+1)*+-176(* = 1)(v+ 1)+ 81(r+ 1)

and collecting the terms 1296+°*—648,°(»+1)*+481(v+41)* whose sum contains the factor
(v—1), we have

(v‘A))S_ 648(7 -5 0 4 1)

—1296( S+l r 1)

— 648( VPt +1)

4+ 81 v 4-52411v415)

— 247+ 353 ) |

+  96( 45 4+ 9+ — 5P— 9P—by—1)
+ 176( P45t 4+100°+ 10 45v41)

=720/ —240/°— 328/°+ 40v* 4 65° + 5 — v —1.
Hence
(A)=(r—1)°(2v—1){90s*+ 1055449 +- 11y 41}

=—1)(2—1)*(3r+1)*{10,*4-5v+41} ;

(*%#) Tt is of course understood that ( p+1)¥ is to be taken positive.
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showing, agreeably with what was seen in the Lemma, that the discriminant of

v (1,6 & &6 1Yo, y)°
vanishes then, and then only, when

e=1, or e=1, or e=—14,

but does not change its sign, except as ¢ passes through the limits 1 and 4, and only
within those limits can become negative(").

(11) Although the theory of the possibility of the roots of (1,¢, &%, #%, 7, 1Y, )*=0
has now been completely investigated, so far as is necessary for the proof of NewroN’s
theorem applied to equations of the fifth degree, it will be found that the labour will not
be ill spent of considering more closely the real nature of the criteria which separate
the case of one pair from that of two pairs of impossible roots in the above equation.
NEewToN’s criteria being constructed so as to cover every possible case for equations of
every degree, will always be found to fit loosely, so to speak, upon each case treated
per se; so that more precise conditions can be assigned in each particular case than those
which are furnished by his rule. So, ex. gr., it may be remembered that in the equation
(1, e, ¢, e, 1Y, y)*=0, NEwroN’s rule implies only that when ¢>1, the roots are all
impossible; but we have found further that unless 1>¢> % (a much closer condition),
the same thing takes place.

It is obvious from what has been demonstrated above, that if we treat » and o, which
are respectively ep—1 and 42 —e’s"—&%’, as the abscissa and ordinate of a variable
point in a plane, the curve A=0, i e. (1086+4-2Tp*428p*)*+ T2p°*+80p°=0 will be
the line of demarcation between those values of ¢, z which correspond to one pair, and
those which correspond to two pairs of imaginary roots.

For all values of ¢, 5 corresponding to internal points of the curve A there will be two
imaginary and three distinct real roots; for all such as correspond to external points
there will be four imaginary roots, and for points on the curve two imaginary and two
equal roots. 7

The curve A is a curve of the 6th degree whose form will presently be discussed.
But there is an important remark to be made in the first instance. Not all the points

(*) In general the case of equal roots of an equation is the state of transition of two real roots into imaginary,
or vice versd. But we see by the above instance that this is not necessarily the case always, for A vanishes on
making e=—1%, and two roots become equal without any change in the nature of the roots when g passes
from being greater to being less than —4. In such case, however, there is a sort of unstable equilibrium in
the form of the equation, by which I mean that the effect of any general infinitesimal change performed upon
the coeflicients of the equation would be either to cause the real rootsin the neighbourhood of e= —1 to dis-
appear by the factor (e+})* becoming superseded by a quadratic function of e with impossible roots, or else a
region in the neighbourhood of &= — would reappear, for which the equation would acquire two real roots,
owing to (e+4)* becoming superseded by a quadratic function of e with real roots, in which case there would
be two values in the neighbourhood of = —1, for each of which there would be a pair of equal roots in the equa-
tion. 'The above is probably the first instance distinctly noticed of this singular obliteration of the usual effect

upon real and imaginary roots of a passage through equality, owing to the appearance of a square factor in the
discriminant,
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within the curve A will correspond to 7¢al values of ¢, 7. In order that these quantities
may be real, we must have

& 417> 2(en)?,

i.e. o'+g2—|-g3>2g%, where g=p+1,
or
A+ 2P+ ¢ +¢* —4¢°+¢° > 0.

Writing this inequality under the form R>0, we see that the curve R=0 will repre-
sent a second sextic curve intersecting the former. A may be called the curve of
the discriminant or déscriminatriz, and will be a close curve, and R the curve of equal
parameters or equotriz, and will consist of a single infinite branch. All points on the
latter correspond to equal values of ¢, 7, those on one side of it to real values of ¢, #,
and those on the other side of it to conjugate values of the form A--4w, A—du respectively.
Thus the area confined within the curve A will be divided into two portions by the
equatrix, and it is impossible to shut one’s eyes to the inquiry as to the meaning of the
variable point lying in that portion which gives conjugate values to s, 2. It becomes
clear by analogy that some kind of distinction must be capable of being drawn between
the nature of the roots of the equation (1, ¢, ¢ #* #, 1Y, y)’=0 when ¢, zare conjugate,
in some sense similar or parallel to that which we know to exist between them when ¢, 4
are real; and obviously this inference cannot be confined to equations of the particular
form and degree of that above written ; in a word, equations whose coefficients are not real
but conjugate, must have roots of two kinds, one analogous to the real, the other to the
imaginary roots of equations with real coefficients. This inference will be justified
in the sequel; but in the meanwhile it will be desirable to complete the investigation
of the special equation under consideration, by a discussion of the forms and relations
. of the two curves Aand R. These curves we know & prioré, from what has been already
demonstrated, can only meet in the three points corresponding to

s:n:l, 5=n=l2-, €=7]=—%;

and since p==g—1, the abscisse of these three points will be 0, —%, —$.

Moreover the 8rd point will be distinguished from the other two by the circumstance
that A does not change its sign as p passes through the value —§. Consequently
the two curves must touch each other at this point.

Since when A=0 p lies between 0 and —+%, the curve A is confined to the negative
side of the axis of . It is also confined to the negative side of the axis of p.

For between the limits p=0, p=—+%,

648p°+672p° i. e. 24(27p*+28p°) is obviously positive,
and
4
96p°+176p°4-81p*= %{(24p+22)§+2} is always positive.

Hence the two values of ¢ are both negative throughout the extent of the curve A,
Thus 44" —&**—%° being negative, £—»* and »*—¢* have the same signs when ¢, »
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are real, as should be the case; for in order that A may be capable of vanishing, &(s*—#?)
and #(7*—¢*) must, by NEwroN’s rule, be both negative, which could not be the case if
either ¢ or 7 were negative; so that &—7* and »’—¢* must have the same signs, in fact
each must be negative.

The curve A under consideration has a multiple point of the 4th order of multiplicity
at the origin, where it is touched by the axis of p. TIts distance from the axis for the
extreme value of p, viz. p=—+%, is 55"

It has three real maxima and minima, two belonging to its upper portion and one to
the lower portion at the points, for which p has the approzimate values —%, —132,
and —%(*). . ,

The curve R, i. e. a'=((p+1)—_l_—_(_p+1)%)2, has the values 0 and —4 at the origin, a
cusp at its extremity corresponding to p=—1, where both of its branches meet and
touch the axis of p, and a negative maximum in its upper branch at the point where
=7

At all points within the curve R, ¢ and 7 are conjugate, and for the points outside real.
Its lower branch will meet and touch the lower portion of A at the point where p=—3§,
and its upper branch will intersect and pass out of the upper branch of A at the point
where p=—3%. The only part of the area A therefore which corresponds to real values
of ¢, », is that which is included between the upper segment of A and the upper branch
of R, and extends only from p=0 to p=—32, i.e. from &r=1 to ey=2%. Hence we may
easily find an inferior limit to the values of ¢ and # when the equation (¢, #) has two real
roots; for we have in that case ¢, 5, 7"—¢’, ¢?—7* all positive. Hence

P> >0, A <Er <L
Consequently ¢, 7 must each of them always lie between ¢%, ¢¢; and since the least value
of ¢ is 4, ¢, 7 must each be always greater than (%)%, i. e. than 38499 (*).

(**) The large numbers which enter into A may be usefully reduced, and the equation A=0 made more
manageable, by aid of the simple substitutions o= ——%1—}, p=-—-i—u. The equation A=0 then becomes
(v—38u? 4+ Tu¥)? =2u° — 5uf,
whose maxima and minima will be given by the equation
(v—3u? + Tu?)(—6u + 21w?) =5u* — 15u° ;
which, making 1—8u=qw, becomes
2700 — 46w —9w+1=0,
whose roots are all real, and are one just a little greater than —1, another & little less than 1, and the third
a very little less than L respectively ; whence p=32(w—1) will have the approximate values given in the text.
(**) &:9 will have a maximum value, which can be found by writing d: 8y :: £:9; and consequently, remem-
bering that ¢g=p+1, B=£+%, e=8—¢*—¢3, :
88 :0q::58: 2¢,
and therefore
0ot 8p i: Bo+gP—q?: 29 :: Be+p(p+1): 2(p+1).
Substituting the values of 8o : p in SA=0, and combining the result with the equation A=0, p and o may be
found by the solution of a numerical equation of the 5th degree, and then e and  may be found by the solution
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There is a third curve not undeserving of notice, of only the 3rd degree, which
embodies the joint effect of the two middle criteria (the two extremes being supposed
to be each zero) in the two cases where NEwWTON’s rule will prove all the roots of the
equaiion under consideration to be impossible. These criteria are ¢, =¢*—e7°, c,=7'—7é".
Bt o' o' =9(2’~8)=9(2¢’— ¢’ —¢'—0)=4(¢’— " —0),
which for all values of g on the positive side of the line p=—1 (i. e. ¢==0) will have the
same sign as ¢*—g¢*—o, which we may call X(*); and K positive will evidently imply
that ¢,, ¢, are one or both of them positive. The whole plane will be divided by the
curve K into an upper region (commencing at ¢ = oo), for which K is negative, and a
lower region, in which K is positive. For any point of the curve K, s=¢*—¢? which
within the limits of ¢ with which we are concerned, viz. those within which A lies,
is negative; for any point of the curve R, the smaller absolute value of ¢ is

—0'—¢+2¢'=¢—¢"+2¢—7),
which < ¢*—g¢* within the limits in question. So that, remembering that each of these
values of o is negative, we see that the portion of the area A corresponding to real values
of ¢, » will be completely above the curve K, 4. ¢. in the negative region of K, and that
accordingly A for real values of ¢, 5 can never vanish when K is positive, as should be
the case. This remark does not, however, apply to the conjugate region of A; for the
curvé K will pass through(™) the lower or conjugate portion of the area A.

‘(12) I may now say a few words on the signification of that portion of A in which ¢
and 7 are conjugate imaginary quantities.

of a quadratic and the extraction of 5th roots. To find the maxima and minima values of s and 4 themselves
exactly would lead to the solution of an equation of a degree quite unmanageable.

But we may first find the greatest maximum and least minimum values of §, i. e. £+%°, by making
dr=(2¢+3¢*3dq in $A=0, which leads to an equation (I forget whether) of the 8rd or 5th degree (it is one of
the two): calling this maximum and minimum 7, p respectively, and naming ¢ (which of course must exceed

unity) the greatest quotient of f—) or g, we shall have

N S—
i:"e‘,,'m>5, 7> 1—:;7-5[.‘.

‘These limits will be tolerably near to the absolute maximum and minimum values of & or 4.. It may be noticed

that we know, from what has gone before, that p can never exceed (%) *; and consequently ¢° cannot exceed 4,
since ¢ is always >1.

(*) I call X the Indicatrix, as exhibiting the joint effect of the indicia or criteria of the Rule.

() This may easily be verified; for at the point p=—3 it will be found that the ordinate in K and the lower
ordinate in A are equal, and at the point p=—-2% the lower ordinate in A is —327;, and in K is —5185;
which shows that the curve K entering the area A when at the lower half of the curve, at a point where p=—3,
must pass through its upper contour in order to cut the line p=—-% as it does above the point where A
is touched by that line.

The curve K has its negative maximum at the point g=%, i. e. p==—1%. It passes through the origin, and
begins with sweeping under the curve A, which it enters exactly under the point where R quits A, and passes

MDCCCLXIY. 4L
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In general, let

(a+ie, b+iB3, c+iy, ..... , ¢—1ty, b—if3, a—ix)x, y)*=0
be an equation in which all the coefficients, reckoning simultaneously from the two ends,
are conjugate to one another, and the central coefficient, if there is one, which can only
be when % is even, real.

Let ;—j:p -ig satisfy this equation. Then evidently g=p~—ig will also satisfy it; or,

which is the same thing, g: 2‘:;_:159 will satisfy it.
Now either this root will be identical with the former one, or a distinct root; inv the
former case we must have p*+¢°=1, and the root will be of the form cos «44sine; in

the second case p*+¢* will differ from unity, and there will be a pair of imaginary roots
of the form ¢(cos ¢4 sin &), %(cos z-4%sin ), in which the real parts e, % are reciprocal

to one another, and the directive parts e=* identical. Moreover, if we write the given
equation under the form U+4V=0, and suppose, as can always be done, that U and V
have been divested of any algebraical common factor, it may easily be shown that the
equation so prepared, and which may be called a Conjugate Equation proper, can have
no real roots and no pairs of imaginary roots in the sense in which that term is employed
in the theory of equations with real coefficients; but the distinction between simple or
solitary and #win or associated roots reappears in the theory of conjugate equations,
under a different form. It will of course be understood that the class of simple roots
for which the modulus is unity is quite as general as that of twin roots, for each of
which the modulus may be anything different from unity, just as in the ordinary theory
the case of real is quite as general as that of imaginary roots, although the former may
be represented by points on a fixed straight line, whilst the points representing the
latter may be anywhere in the plane, this liberty of displacement being balanced, so to
say, by the constraint of coupling. The general geometrical representation of the roots
of a real equation is a system of points in a line, and a system of pairs of points at equal
distances on opposite sides of the line. So the general geometrical representation of the
roots of a conjugate equation will be system of points in the circumference of a circle to

through A at a point very close indeed to the horizontal extremity of A. It may be mnoticed that when
p=—1%, the smaller ordinates of R and A are each —¢', the ordinate of K and the larger ordinate of A being
each —2.

I have found the points of contact of K with A by actually substituting ¢—g?, i. e. p(p+1)? for ¢ in A=0.
This gives the equation
2064p* +7352p* + 9823p* + 5832p + 1296 =0,

one factor of which is 4p+-3, dividing out which we have
516p°+1451p* 4-1368p +432=0.

The Newtonian criterion applied to the three first coefficients of the above gives —13625, showing that two of

the roots are impossible ; the remaining real root I find to be ‘8946, &c. It does not appear to be a rational
number.
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radius unity, and of points situated in pairs in the same radii at reciprocal distances from
the centre. In a word, in each case we may say that the roots can be geometrically
represented by points on a circle, and pairs of points electrical .images of each other in
respect to the circle, but the radius of the circle in the one case will be infinity, in the
other unity. Conjugate like real equations will have all their invariants of an even
degree real, and those of an odd degree will be pure imaginaries, or real quantities
affected with the multiplier 4. Their morphological derivatives (covariants, contra-
variants, &c.) will be also conjugate forms. The whole doctrine of equations, as regards
the separation of real from imaginary roots, and the determination of the limits within
which the former lie, will reproduce itself with suitable modifications in the theory of
conjugate equations, in which simple, on the one hand, and coupled or twin roots, on
the other, will correspond respectively as analogues to the real and imaginary roots of
the ordinary theory. Thus the following theorem may be demonstrated without diffi-
culty, viz., in any conjugate equation the number of coupled roots is congruent to 0 in
respect to the modulus 4 when the discriminant is positive, and to 2 in respect to the
same modulus when the discriminant is negative(*’). 'We see now how to interpret the

(*) (*) A very simple linear transformation shows the immediate connexion between the solitary and asso-
ciated roots of conjugate with the real and paired imaginary roots of ordinary equations. For if f(z, y)=0 be
a conjugate equation, writing

y=v+i, r=v—7iu,

f(z, y) becomes F(u, v), a real form in u, v.

‘When u, v are real, we have
Yy vt v\ .. v
=== —=C08 ~1— =1-13
= v tan -] +isin tan )’

when %:ci @y, the two values correspond to

g_c+'¢"y+z y) c——zy-{-z
x octiy—i ( c—ty—1

Thus

i

: (%)' (i) (y—1)s
also
(1) Skt
x" \w) ~E—=1+y*—20’
of which the modulus is obviously unity.
(*) Now it is known that if £ be the number of real, and 7 of imaginary rootsin the real form, (u, v)», its dis-

#(t—1)
criminant, bears the sign (—)"2 . Hence the sign of the discriminant of the conjugate form («, y)» (since the

determinant of v+, v—iu is 2¢) will be (—)¢, where

q__n(n-—l) t(t-—l) (t+fr)(t-—1+'r)+t(t 1) (-r 1)

=t(t—1) +tr+——

Hence since 7 and ¢(¢—1) are both even, (—)q=(—)t(i'212, and the sign of the discriminant of a conjugate
form is 4 or — according as the number of imaginary roots does or does not contain 4 as a factor.

It must be remembered that the sign of the discriminant is not in general the same as that of the zeta or
squared product of differences of the roots. The sign of the zet for real equations follows precisely the same
law as the sign of the discriminant for conjugate ones.

412
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effect of the variable point whose coordinates are ¢+7* and e lying within the area A,
in that portion of it for which ¢, s became imaginary; viz. it is that in such case the
equation (s, 7), which then becomes of a conjugate form, will have three simple and two
twin roots; and thus the unity of the interpretation is restored if we choose, as we very
well may, to extend the use of these terms to the real roots and the paired imaginary
roots of ordinary equations. We may neglect the curve of reality R altogether, and
affirm that all over the area A, ¢, » will have such values as will give rise to three simple
and two coupled roots.

(13) That part of the theorem of NEwroN which had received a demonstration from
Macravriy and CAMPBELL in the generalized form in which I have enunciated it in this
paper, may be easily extended to the case of conjugate equations. It will, as applied
to them, read thus: If the (n—1) quadratic derivatives of a conjugate form of the nth
degree, all whose roots are simple, be multiplied respectively by the coefficients of any
other conjugate form, all whose roots are also simple, of the degree (n—2), and the sum
of these products be taken as a new quadratic form, the discriminant of this latter must
be positive, or, which is the same thing, its determinant must be negative.

(14) Somuch for the case of n=5. If we were to proceed to the consideration of equa-
tions of the 6th degree, two cases of resistance would present themselves in the demon-
stration of NEWTON’S rule, viz. one in which the signs of the criteria are — 44+ —,
the other —+—+4—. 1In the latter it would only be necessary to show that the
discriminant is necessarily negative, since we know from the derivatives that the equa-
tion must have four imaginary roots, and the choice would lie between the alternatives
of there being four or six. In the former case the derivatives only indicate the neces-
sary existence of two real roots, and it would become requisite to prove that there must
be four or six—an alternative which depends not on the sign of one function of the
coefficients, but on the nature of the signs of two such functions given by SturM’s or
any equivalent theorem. It would thus become requisite to prove that two functions
of the coefficients, say L, M, could not both be negative; and this might be shown by
demonstrating the existence of two quantities, I/, M, other functions of the coefficients
incapable of assuming any but the positive sign such that L'L+M'M would be necessarily
positive.

Parr IL—ON THE LIMIT TO THE NUMBER OF REAL ROOTS IN EQUATIONS
OF THE FORM Z(ax+b).

(15) I shall now proceed to the consideration of a theorem relating to a particular
class of ordinary equations, which occurred to me in the course of and in connexion
with the preceding investigations. The theorem itself, but unaccompanied by proof, has
appeared in the ¢ Comptes Rendus’ of the Academy for the month of March 1864.

Both as regards its nature and the processes involved in the proof, it stands in close
relation to NEwTON’S rule, my study of which in fact led me to its discovery. It will
therefore take its place most appropriately in this paper.
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Certain preliminary properties of circulation introducing some new notions of polarity
must be first established, by way of Lemmas to the proof in question.

By a type let us understand a succession of symbols of any subject matter whatever
susceptible of receiving the signs 4 —, or any suchlike indications of opposite polarity.

Let @, b,¢, ... 1, k, I be any such type, where the elements a, b, ¢, . .. may be regarded
either as points in a line or rays in a pencil affected respectively with the signs of 4
and —. :

Then by a per-rotatory circulation of such type, I mean the act of passing from the
first element to the second, from the second to the third, &c., from the last but one to
the last, and from the last to the first.

By a trams-rotatory circulation of the same, I mean the act of passing from the first
to the second, the second to the third, &c., from the last but one to the last, and from
the last to the first, with its sign reversed.

A type considered subject to per-rotatory circulation may be termed a Per-rotatory
‘Type; one subject to the other sort of circulation, a Trans-rotatory Type.

If @, b, ¢, d, e be a per-rotatory type, its direct phases are

a, b, ¢, d, e,
b, ¢, d, e, a,
¢, d, ¢ a, b,
d, e, a, b, c,

¢, a, b, ¢, d,
and its retrograde phases
a, e, d, ¢, b,

e, d, ¢, b, a,
d, ¢, b, a, e,
¢, b, a, e, d,
b, a, ¢ d, c.

If, on the other hand, @, &, ¢, d, e be a trans-rotatory type, its direct phases will be

a, b, ¢ d,
b, ¢, d, e,
¢y d, 5, Zl., b,

- and its retrograde phases
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where the sign (—) is, for greater convenience of writing, placed over instead of before
the elements which it affects; and so on in general a type of » elements, whether per-
rotatory or trans-rotatory, will admit of # direct and # retrograde phases.

If we count the number of variations of sign in the circulations of any phase of a
per-rotatory type, this number will be the same for all the phases, and will be an even
number; this even number may be termed the variation-index of the type.

So, again, if whatever be the original signs of the element in a trans-rotatory type, we
count the number of variations in the circulation of any of its phases, this number also
will be constant and will be odd, and this odd number may then be termed the variation-
index of the type.

(16) Let any phase be taken of a per-rotatory type, and out of such phase let any
element be suppressed; then we obtain a type one degree lower in the elements, which,
if we please, we may consider as a trans-rotatory type, and such trans-rotatory type
may be termed a derivative of the original per-rotatory one.

In like manner any phase being taken of a trans-rotatory type, one element may be
suppressed, and the reduced type treated as a per-rotatory one, and termed a derivative
of the original trans-rotatory one.

We may now enunciate the following important general proposition, viz.

Any trans-rotatory type or any per-rotatory type whose variation-index is different
from zero being given, a per-rotatory derivative of the one and a trans-rotatory deri-
vative of the other may be found such that the variation-index of the derived types in
either case shall be less by a unit than the variation-index of the types from which they
are derived.

Case (1). Let- the given type be per-rotatory. Then by hypothesis, since it has some
variations, we may find a phase of it beginning with 4 and ending with —, by which
I mean beginning with an element that is positive and ending with one that is negative.
This gives rise to two sub-cases. _

T, the phase in question, will be 4..... +—

O, the phase in question, will be +..... —_—
In either sub-case let the last sign be suppressed, and the result treated as a trans-rotatory
type; then T, ® become respectively T', @', where

and

and evidently the variation-index of T — variation-index of T'= number of changes of
sign in 4 — - less changes of sign in +—=2—1=1; and again variation-index of
©®— variation-index of ® = number of changes of sign in — — + less changes of sign in
——=1—0=1. Hence the theorem is proved for the case where the given type is
per-rotatory.

Case (2). Let the given type be trans-rotatory.

Then, again, there must either be a phase of the form P, or one of the form ®, where



AND IMAGINARY ROOTS OF EQUATIONS. 601

P represents a continual succession of signs of the same name as ++ ... 4+ or ——. e —
and @ represents a succession beginning with one sign as + and ending with one or
more signs —, or else beginning with — and ending with a succession of signs -+.
Essentially, then, as a change of signs throughout a whole succession does not affect
the variation-index, we may suppose

P=— ... —+... 4,

the signs intervening between the two expressed signs — in @ being filled up in any
manner whatever, and those between the two signs 4 with signs exclusively +.

Let now that phase of ® be taken which commences with the first sign of the final
succession of +. Then ® becomes

which is of the form

| .. ++,
so that P is only a particular case of (®). If the last sign in (P) be suppressed and
the result treated as a per-rotatory type be called (®), so that (®Y=-...... +, we

have variation-index in (®)— variation-index in (®)'= changes of sign in — + less
changes of sign in ++=1—0=1.

Hence the proposition is established for both cases.

(17) The theorem to which this Lemma-proposition is to be applied concerns equa-
tions of the form

gl teur+0... 4+sur=0,
where w,, %, ..., %, are any linear functions of &, ; m is any positive integer, and
&, € - - - £, are each respectively and separately, either plus unity or minus wunity.

Such an equation for convenience of reference may be termed a superlinear equation,
and the function equated to zero a superlinear function.

Every superlinear function may be conceived as having attached to it a pencil of rays
constructed in a manner about to be explained.

1. We may conceive the function to be prepared in such a manner, that supposing
axz-+by to be any one of the n linear elements u, every b shall be positive. If m is even,
this can be effected by writing when required for az+by, —axr—by without further
change. If m is odd, we may write when required —axz—b&y in place of ax-by,
changing at the same time the factor ¢, which appertains to (ax—&y)™ from 41 to —1,
or vice versd, from —1 to 4 1.

Now take in a plane any two axes of coordinates O, On, and cons1der a, b as the £
and # coordinates of a point. All the » points thus obtained, on account of every & being
positive, will lie on the same side of the axis Oz, and thus the entire » linear functions
will be represented by a pencil of » rays, the two extreme rays of which make an angle
less than two right angles with each other; but each term of the superlinear function
contains, besides (ax+0y)", a definite multiple +1, or —1, and we must accordingly, to
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completely express such term, conceive every ray affected with a distinct sign 4 or —.
A pencil thus drawn with its rays so polarized will give a complete representation of
any given superlinear function, and may be called its type-pencil (*).

I am now able to state the following proposition :

(18) The number of real roots in a superlinear equation cannot exceed the variation-
index of its type pencil, regarded as a per-rotatory type, if the degree of the equation be
even, and as a trans-rotatory type if the degree of the equation be odd. I prove this
inductively as follows.

1. Suppose the theorem to be true when the variation-index of the type-pencil is
not greater than the even number », and consider an equation of the odd degree (2¢+1),
for which the type-pencil viewed as trans-rotatory has the variation-index v-41.

Let a phase of this type be taken, say corresponding to the rays g,, ¢, ... g, &1, such
that the per-rotatory type obtained by striking out the term p, has the variation-index »
(as we know may be done by virtue of the Lemma).

Take for new axes O, Oy, when Of coincides with ¢;; then it is clear that the
pencil ¢, g,_; ... g Will still serve as a type-pencil to the given function, the only
change being that some of the rays, namely those that did lie on one side of g,, have
been inverted in direction and changed in sign (corresponding to a change in the coeffi-
cient @, b, accompanied with a change in the sign of the corresponding &), whilst the
rays on the other side of ¢, have been left unaltered.

The points (ay, b,), (@, 8,). .. (a,, b,) corresponding to the rays g, g,, ..., will, with
respect to the new axes, change their values, becoming converted into (e, 0), (@, f3,),
(@ Bs)s+ -+« (@ 3,), Where B,, 35, ... 03, will still all be positive, the angle between g,
and g, being the same as between the two extreme rays in the original figure of the type-
pencil, and the superlinear equation may now be written in the form

F(u, v)=¢,(c;u0)* ' ey + Bo0)* ' (006 + By0) ! -6, (2,44 B,0) 1 =0,

where u, v are real linear functions of , y.

(®) Let a circle be imagined pierced by a pencil containing-any number of rays protracted in both directions,
sayin the opposite points a, a; b, 8; ¢, v; d, ¢; and let these points, taken in order of natural succession from
left to right, or right to left, be a, b, ¢, d, @, 3, y, 8. Then, commencing with any point ¢, a complete circulation
will be represented by the succession of transits

ctod, dtoa, atoB, Btoy, ytod, dtoa, atod, Btoec.

But whether a, 8, v, ¢ bear respectively the same signs or signs contrary to those of a, 3, ¢, d, the transit be-
tween any two points B to v will be of the same nature, as regards continuance or change of sign, as the transit
from b to ¢, and thus we see that the complete cycle or total revolution above indicated is only a reduplication
of, and may be fully designated by the hemicyclic succession ¢ to d, d to a, « to 3, 3 to y, for which the num-
ber of variations therefore will be the same as for any similar succession obtained by commencing with any other
element in the original system of points instead of ¢. If the opposite points bear like signs, the ahove suceession
of transits may be indicated by the order ¢, d, @, b, ¢; if they bear contrary signs by the order ¢, d, @, b, ¢, and thus
it is that the idea arises of the two kinds of so-called circulation, but which are in fact only more or less dis-
guised species of semicirculation.



AND IMAGINARY ROOTS OF EQUATIONS. 603

Let the derivative of this function be taken in regard to v, and we have

5y Flw0)=Paeu-t B+ B auBo). .. Bl ei-+P)

where B.,, B:; . . . B¢, have the same signs as ¢, ¢, . . . ¢, respectively.

Now the pencil-type of F'(u, ) will be the per-rotatory type e,, £, - - - &, of Which
by construction the variation-index is». Hence by hypothesis F/(#, v) has not more
than » real roots, i. e. at least 2—» imaginary roots. Hence F(u, v) has at least that
number of imaginary roots, i. e. at most (2¢+4+1)—(2¢—»), 1. e. »+1 real roots. Hence if
the theorem is true for » an even number, it is true for v-41.

In like manner let us proceed to show that when it is true for » an odd number, it
would remain true for y-41. ‘

The reasoning will be precisely similar to that followed in the antecedent case. 'We must
find a phase of the per-rotatory type e, gn—y, - - - £ &, having the variation-index » such
that the trans-rotatory reduced type g,, g,_, - - - ¢, shall have the variation-index v—1;
the new pencil will still continue to be a type-pencil of the given superlinear function,
the change of direction in the bunch of rays one on side of g, being now unaccompanied
with change of sign, such change corresponding to g(ax-by)* becoming changed into
¢( —ax—>by)* without ¢ undergoing a change of sign.

As before, the axes of coordinates are transformed from £, 7 into £, 4, and we obtain

F(u,v)= el(oolu)""+s2(oa2u +B)*+. . e (w4 B0y,
'2li F’(u, ’l)) - Bz%(“z’“‘l‘ﬁz’v )%_l +... +Bnen(“nu +ﬁn”)2i-

for which the type-pencil is the trans-rotatory type g,, g,_y, - - - g3, 0f Which by construction
the variation-index is »—1, so that its number of imaginary roots is 2¢{—(y—1), 4nd con-
sequently the number of real roots of F(u, v) will be »41.

Thus, then, if the theorem be true for », whether » be even or odd, it will be true for
v+1.

But when »=0, the superlinear function becomes a sum of even powers of linear func-
tions of #, y, all taken with the same sign, of which the number of roots is evidently 0.
Hence, being true for this case, the proposition is true universally.

It will be noticed that the algebraical part (as distinguished from the purely polar-
tactic part of the above demonstration) depends on the same principle of which such
abundant use has been made in the former part of this dissertation, viz. that the num-
ber of imaginary roots in any ordinary algebraical equation in & cannot be increased
when we operate any homographic substitution upon #, and take the derivative of the
equation thus transformed in lieu of the original(*).

(**) For greater clearness I present in an inverted order of arrangement a summary of the foregoing argu-

ment. :
By an ith derivative of f(x, y) is meant any derived form

d d d d d d
(>\1 ﬁ"’#l @)(7‘2 %+Fz d_y) ce ("t d—x’f'lv‘i @) f@9),
MDCCCLXIV. 4 M
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(19) The proposition above established leads immediately to the theorem and corollary
following, viz.

TaEOREM. If ¢, ¢y, ... ¢, be a series of ascending or descending magnitudes, and m
any positive integer, the equation '
M@+ o) +r(rt6)" 4. . A (240, ) =0
cannot have more real roots than there are changes of sign in the sequence A, 2,, ...

Ay (— )"

For obviously (1, ¢,), (1,¢6,),... (1, ¢,) will be points corresponding to rays within a
semirevolution, and therefore forming a type-pencil.

Corollary. If the above equation be transformed by any real homographic substitu-

tion into the form
(g )" +ea(y v+ -yt =0,
where ¢, ¥, ... v, are taken in ascending or descending order, the number of changes
of sign in the series p,, s, - .. t,, (— )" is invariable(*); for the effect of any such
formation will be to leave the type-pencil unaltered except in its phase.
(20) If we look to the undeveloped form of the superlinear function

S=eul+eur+ ... ey,
and are supposed to possess no knowledge of the coefficients which enter into the linear
elements u, we may still draw some general inferences as to the limit of the number of
real roots in S=0. Thus if the number of positive units ¢ is j, and of the negative
units £, and j is not greater than %, it is obvious that, whatever may be the form of
the type-pencil to S, its variation-index cannot be more than 2 when m is even, nor
more than 2j+1 when m is odd; for the arrangement the most favourable to the large-
ness of the number of the real roots is that where every two rays with the signs belong-

the A, n quantities being any real quantities whatever. Then I say—

1. If T is the type-pencil (per-rotatory or trans-rotatory) of any superlinear form F, every derivative of T of
the contrary name is the type-pencil of some first derivative of F, as shown in art. (18).

2. A derivative of T of contrary name may be found such that its variation-index shall be less by a unit
than that of T itself, as shown in art. (16).

3. Hence if < is the variation-index of the type-pencil of F, an sth derivative of F may be found such that
its variation-index shall be zero, and consequently having no real roots.

Hence, finally, since the number of real roots of any rational integral homogeneous function in @, y cannot
exceed by more than ¢ the number of the real roots in any of its ¢th derivatives, F cannot have more real roots
than there are units in the variation-index of its type-pencil.

The subtle point of the argument, it will be noticed, lies in forming the conception of the variation-index to
a trans-rotatory pencil, in which the singular phenomenon occurs of a reversal of relative polarity in passing
from the last ray to the first, whereas in a per-rotatory pencil any ray indifferently may be regarded as the
initial ray, no such reversal in that case taking place.

(*) It may be noticed that, contrariwise, the limit to the number of real roots given by Newron’s criteria
is mot an invariant; it fluctuates with the homographic transformations operated upon the equation; and a
question suggests itself as to the maximum value the number of imaginaries indicated by the rule can attain, I

presume this maximum is not in all cases necessarily the actual number of the imaginary roots possessed by
the equation.
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ing to the j group of ¢ are separated by one or more of the rays with a contrary sign to
themselves. Thus it appears that when only the units ¢,, ¢,, ... ¢, are given, we may
impose a maximum upon the number of real roots in the superlinear equation; this
limit may be called the absolute maximum, being the double of the inferior number
of like signs in the series ¢,, &, ... ¢, when the degree is even, and one more than such
double when the degree is odd (**).

The specific mazimwm, on the other hand, will depend on the form of the type-pencil,
and cannot be ascertained until the coefficients of the linear elements are given. It can
never exceed, but may be less than the absolute maximum. It may, indeed, be easily
proved that in general the specific maximum will be less than the absolute maximum.
Thus, by way of example, suppose the degree to be even, and the inferior number of
like signs to be 2; the absolute maximum number of real roots will be four, but the
specific maximum will more generally be only two. For let the number of linear terms
in the superlinear function be 24-n, n being 2 or any greater number; and first, to fix
the ideas, suppose n=2. The type-pencil, which is to be read per-rotatorily, consists of
four rays, say @, b, ¢, d, following each other in uninterrupted circular order, of which
two are to bear positive and two negative signs. If the two negative signs fall on @, ¢
or on b, d, the variation-index will be 4, but in the other four cases of incidence such
index will be only 2. Consequently the chance is 2 to 1(*") that the specific maximum,
which may be 4, is not greater than 2; and consequently the chance that there will be
four real roots in the equation will be only a chance (too difficult to be calculated, but
which is a function of the degree of the equation) ¢f the chance % that there will be as
many as four real roots in the equation u}-uj—us—u;=0, where u,, u,, ¥;, u, are

(*) (*) If a superlinear form of an odd degree contains an odd number of terms, say 2k-+-1, the greatest value
of the ¢nferior number of like signs is &, and the extreme limit to the number of real roots will be 2%-+1.

If it contain an even number of terms, say 2k, the greatest value of the inferior index is %; but for this par-
ticular case it will readily be seen that a limit may be assigned to the variation-index closer than that given by
the rule in the text; in fact the variation-index cannot in that case exceed 2k—1, which will therefore be the
extreme limit to the number of real roots. Now suppose the canonizant of an odd-degreed function of x, ¥ to
have all its roots real, then it may be expressed by a superlinear form of which the number of terms will be
2i+1 or 2¢, according as the degree is 441 or 46—1. In the one case the number of real roots cannot exceed
2i+1, in the other 2i—1. Hence the following somewhat curious theorem:

(®) If the canonizant of an odd-degreed quantic in X,y, of the degree 4111, has no imaginary roots, the quan~
tic stself must have at least i pairs of imaginary roots. From the fact that when the roots of the canonizant of a
quintic are all real there must be one pair at least of imaginary roots, we can infer that when the discriminant
of a quintic is positive and that of its canonizant is negative, the equation has one real and four imaginary roots.
This observation has led to a long train of reflections, which will be found embodied in the 3rd part of the
memoir.

(*) This, in fact, is identical in substance with the noted problem of determining the chance that two straight
Jines drawn on a black board will cross. Mr. CayrEy, of whom it may be so trlily said, whether the matter

-he takes in hand be great or small, ¢ nihil tetigit quod non ornavit,” suggests the following independent proof
of this, Taking unity as the length of the contour, fixing the extremity of one of the lines, and calling s the
distance of its other end from it measured on the contour, the chance of the second line crossing this is easily
seen to be 2s(1—s), which, integrated between s=0, s=1, gives %, as before obtained.

4M2
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unknown linear functions of #: thus we are entitled to say that ¢n general the number
of real roots in such an equation is not the maximum four, but a less number. This
remark is of importance, as showing that on this subject it is possible to speak with
scientific certainty, and on other than empirical grounds, of what may in general be
expected to take place. Thus we find NewroN declaring twice over in the chapter
quoted, that ¢n-general his rule will give not merely the maximum, but the actual
number of the imaginary roots in an equation. I am strongly inclined to doubt the
truth of this assertion; but it is important to be satisfied by analogy that such an
assertion may rest on a scientific and demonstrative basis, and not on the utterly falla-
cious foundation of arithmetical empiricism (*).

(*) A few additional words on this question of probability may not be unacceptable. In order to meet the case

of the degree of the superlinear form or equation being odd as well as even, let it be supposed known under the form
, A +0,)"

the values of the quantities ¢, being supposed to be left wholly indeterminate, and only the signs of the quanti-

ties A to be given. Let w be the inferior number of like signs in the A series, meaning thereby that the num-

her of signs of one sort is w, and of the other sort w, or more than w.

Let the probability of the specific maximum of real roots being 2% when m is even, be represented by por,
and of its being 2k +1 when m is odd by mar41; also let sox, oor41 represent the number of cases when w and n
are given which correspond to the specific maximum being 2k, 2k+1 respectively. Suppose w=1, then obvi-
ously, when m is even, we have s,=n, p,=1. But when nis odd #,=2 (for when either extreme clement alone
is negative the trans-rotatory cycle has the variation-index unity), and ¢,=n—2, so that

2 n—2

M, —— 7T=
1™y 78 n

Again, suppose w=2, m being even; then obviously s, is the number of contiguous duads in a cycle of n
elements, and s, is the remaining number of duads; hence

n—1 n—3
sz='n,, s4=n—-—2———n=n——2-— >

8o that
2 n—3
P PEnT

2nd. Suppose w=2, m being odd, so that ¢, ¢,, o; Will have to be separately estimated. To fix the ideas,
let the A series be termed a, b, ¢, d, ¢, f, g, in which two of the clements are supposed of one sign, say negative,
and the rest of the opposite sign, say positive ; then the only dispositions of sign which correspond to the specific
maximum being 1 are those in which , b or else f, g are both negative. Hence o,=2. Again, the dispositions
of sign which make the specific maximum equal to 8 are those in which @, g are both negative, those in which
a and ¢, d, ¢, or f are negative, those in which g and ¢, d, ¢, or b are negative, and, finally, those in which
any two contiguous elements except the @ and g are negative. Hence o;=142(n—3)+(n—3)=38n~—8; and
it should be observed that this result cannot be prejudiced in its generality by the supposition of any of the
components of g, becoming negative, since w=2 implies that » is at least 4, Hence, finally,

n—n w2—Tn+12 (71—3)(7?;—4) .
o;=—g— —(Bn—8)—2= 3 = S 5

5
so that
_mi— 77z + 16

e —
5 n—mn

4 6n—20
=

=y
This example serves to show how much more difficult is the computation of the respective probabilities when m
is odd than when m is even, owing to the break of continuity in the cycle of readings on passing from the last

to the first term,



AND IMAGINARY ROOTS OF EQUATIONS. 607

NOTES TO SECTION II.

Received May 7, 1864.

On the probability of the specific superior limit to the number of real roots in a
superlinear equation equalling any assigned integer.

(21) The question comes to that of determining the probability of a per-rotatory or
trans-rotatory pencil with a definite number of rays of each kind possessing a given
variation-index.

Since the foot note below was written, a method has occurred to me of obtaining the
probability in question in general terms, as follows. :

1. For a per-rotatory pencil of p positive and » negative rays. Let [u, », ¢] be the
probability of the rays being so disposed as to give rise to 2¢ variations of sign in
making a complete revolution. Then there will be ¢ distinct groups of positive, and ¢
of negative rays. The number of partitions with permutations of the parcels infer se-

of w elements in ¢ parcels is (k _l)gp’ ;?'i‘; )—g *+1) and of v elements into g parcels is
(=1)(—2)..0—g+1) o
2..(g—1) ’
If we combine each parcel with each in every possible way, and then imagine the
combined parcels let into a circle containing m-+n» places and shifted round in the circle
through a complete revolution, we shall obtain

(=N (=gt DL 1))y +1)

(b 2)x 5..(g—1) 1.2.(g—1)
arrangements; but on examination it will be found that every arrangement so produced
will be repeated g times; moreover it is obvious that no other arrangement giving rise
to g groups of each sort can be found. Hence the true number of distinct groupings
of the sort in question is

Bty (p=1E—2).(r—g+1) (—1)(¢—2)..0—g+1).
g 1.2..(9—1) 1.2..(g—1)

It seems hardly worth while to pursue this subject in greater detail. I will only notice that when m is even
the chance of the specific maximum attaining the absolute maximum, 7. e. becoming 2w, will depend on the pro-
portion of the ways in which in a cycle of » elements w of them may be marked with a distinetive sign in such
a way that no two of such signs shall come together. ~Accordingly I find by a computation of no great difficulty

(understanding 72 to mean 1.2.3...2),
'nr('n—m-l)
S20= rwr(n— Zm)

and hence, since the total number of combinations of » elements w and o together is T , I deduce

ror(n—w)
7r(n-—-w)7r(n-—m-——1)

Po="0 (=D r(n—20)

ror(w—1)

7r(w—1)
again n increases towards infinity p,, approaches indefinitely near to unity, and the chance approaches near to
certainty of the specific not beoming less than the absolute maximum of real roots,

Thus when # has its minimum value, viz. 2w, pa,= , and becomes very small as  increases., When
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And the total number of arrangements, which is the number of ways in which w things

can be distributed over (w-v) places, is (”’ +"). Hence we obtain

my (1) (5—2) e am gt 1) X (= 1) r=2) =g 4 1)
(s 2, g]_ ‘u+v—l){ , 1.2.(9—1)(1.2..9) }

_ aur(p—1)mvm(v—1) )
T agn(g—L)mlp—g)ml—g)r(p+v—1)

[Throughout these investigations #() is used in the same sense as Iz, to signify the
factorial 1.2.3...2.]

If there should appear any obscurity in the statement of the method by which has
been obtained the number of distinct distributions of the w, » elements into ¢ groups
of each, the reader is referred to the equation in differences obtained further on in this
Note, by which all doubt of the correctness of the result will be removed.

(22) For a trans-rotatory pencil of rays, to ascertain the probability of the variation-
index being 2¢g-1.

Imagine a circular arrangement of w positive elements and » negative elements con-
taining 2y variations.

Let this circle be supposed opened out at any point and the variations of the open
pencil so formed to be reckoned according to the trans-rotatory law, which is that in
passing from one extremity to the other a change iz to be seen as a variation, and a
variation as a change. If the break is made between two negative or between two
positive elements, the number of variations obviously becomes increased by one unit; but
if between a positive and a negative element, that number becomes decreased by one
unit. The number of these latter intervals is 2y, and of the former p+4»—2y.

Hence the probability of the index becoming 2y +1 is ¥ ';"_;27, and of its becoming
2y—11is —= i +v
If, then, we denote the probability to be calculated by [u, », g-+1], it is obvious that

we shall have

+
(e 2, 9"'%]_“#:.,,'9[ ”,.9]"" ‘u,+,, [f"’ » g+1].

But by the formula previously obtained it will easily be seen that

[ v, g+1]= % [ v, 9]

Hence
s Vs 2(p—g)(v—
AP
2uy
__<9(PP:I-V) 1)[‘”‘»%9] R )
=9 ()2 (mv)? apw (g —1)mym(v—1)

w(g—)a(g+1)a(p+ap—g)r(v—g) w(g—1)mgn(p+7—L)a(u—g)r(v—g)
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~ When g=0 the above expression fails; but reverting to the equation from which it is

derived, we obtain
Zmpmy

2
(s 2 %)=ﬁ’_ﬁ[{‘" v, 1]= wlut)
(23) These combined results admit of an easy corroboration, for
2 (@, v, g+%)=1, and 3 (u, v, g)=1.

Hence the equation marked * gives

2uy s ¥
1=, s 52,

Hence we ought to have

mpIY woo [ v, 71 . muy e+,
M) Tarr > g = b e I =

which is true, since the left-hand side of the equation is 1+m+,w’f:—2'—l-w -’13'2-1+ ceey

which is obviously the coefficient of #” in (14a)*(2+1), i. e. in (1) +.

(24) If we wish to find the chance of the specific superior limit becoming equal to the
absolute superior limit, we must write ¢ in the above formule equal to », that one of the
two quantities w, » which is not greater than the other, and we shall obtain

__ mw(p—1)
s 2] =T =Tty

I 1
(s v, v+5]=1 M_,_’: (I(:b__,,)_l)

so that, in fact, [, », v4+3]=[w, v+1, v+1], which relation may also be obtained by
& priori considerations.

(25) With reference to the remark made concerning the mode of obtaining the value
of [, v, g, I proceed to show how it may be obtained directly by the integration of an
equation in differences, and by a method analogous in idea to that by which [, », g+1]
was made to depend on [w, v, ¢]. For as in that case we conceived an open pencil to
be closed and then reopened, so we may imagine one of the rays to be withdrawn and
then reinserted. In this way, observing that the effect of introducing a negative sign
into a circle of w positive and # negative signs consisting of » distinct groups of each is
to produce no change in the number of the groups if inserted between two negative
signs, but to increase that number by unity if inserted between two positive signs, we
may infer that the probability of » becoming »+-1, in consequence of such insertion, is
z I:, and of » remaining unaltered, is [Zj—j—__—;z

Hence we obtain the equation in differences,

S op—g+1
[ v, 9= ‘U,_;_,__g[('“a -1, .9]+”+€_1[F"r”"'13 g=1],

in Whmh w may be consniered constant, and » and g to vary.

v
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‘The integral must satisfy the further condition that [u, 1, ¢] shall be unity when ¢ is
1, and zero for all values of ¢ greater than 1.

Assume the value of [u, 1, g] obtained by the method given in art. (21). This
obviously satisfies the initial conditions corresponding to y=1. Moreover we may easily
deduce from it the equalities

-1 v—1%v |
(e v—1, 9—1]=ﬁ-1)—)(f_—9) [, v=1, g], and [u, », 9]=(71'(§1T)’(7:§7[F4> v—1, g].

Hence the equation in differences will be satisfied if it be true that
-1
O =g+ L

which is obviously the case, since v2——v—g2—g=(u—g)(v+g—1).

Since, then, the assumed value of [w, », ¢] is correctly determined when v=1, it is
obvious, from the form of the equation, that it holds good]for all other values of v, as
was to be shown.

(26) From the equation
“ (9, 9+1] _(—9)o—g) .
v 9] = glg+1)

making (u—¢)(v—g)=g(g9+1) or g= +p; ”-l- 7, we may readily infer that the value of ¢

for which the probability [, », ¢] is greatest is the integer part of —~—, if that quan-

+ + r
tity is non-integer, or the quantity itself and the number next below it (indifferently) if
it is an integer.

(27) If we apply a similar method to [w, », g+3], we obtain by aid of the formula
above given,

[y 9+%5] _  qw—(ptv)y  (wt+1)—s+1—y),

h (ks 9 9—=4]  2pvtp+yv—(wtv)y 7
and equating this ratio to unity, we obtain

2uy — (o +-v)y ?

Zuvtptv—(ptr)y — (p+ 1)+ —(tr+2)y’

or writing w+v=p, w=q,
(P*+p)7"—(3pg+4q-+p*+p)r+29(g+p+1)=0.
The roots of this equation will be both of them real, for its determinant is
P’q+16pg*+169"+(p* +2°) (" +-7°),
which is necessarily positive. Ience it follows that there are two positive roots of the
equation. Whether there will exist values of ¢ which give actual maxima or minima
values, or one and the other to [w, », g+43], depends on the further condition being
satisfied that the values of ¢ in the above equation shall come out, one or both of them,

not greater than either of the two numbers w, ». The inquiry connected with the satis-
faction of this condition may be conducted by means of repeated applications of the
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processes of STURM’S theorem; but I shall not enter upon it, as it appears to lead to
calculations of complexity disproportionate to the interest of the result.
(28) It may be noticed that the average value of [w, », ¢] can be calculated without
any difficulty. This will be Z(¢[w, v, ¢]), or
- -1 (v— - — —- —
,»fzw—n[l"“ w 1( 1) + (e —=1)( 12.)2(: 1)(r—2) +.. ]
_ mumy w(p+v—2) pvo
T tr=1) Ap—Dap—1) " (ptv—1)°
so that the average number of variations of sign in a per-rotatory pencil with u positive
;%-1, or a little more than the harmonic mean between w, ».
In like manner, for a trans-rotatory pencil this number will be

32+ 1) 5 g+ 11=l » 11+ 3(@0+ D) o — Dl » 9]

which, observing that 2w, », ¢]=1, and (w, », o)+ "J’ ’ 2’“ ’;’ 9 =2, gives as the average

and » negative signs is

number of variations of sign =&~ dwv %47,
ptv  ptv—1

Received May 10, 1864.

(29) The simplest mode of calculating the value of [, s, ¢] is the following:

Let [w, v ¢)s [pb, v, (g—%)) denote the probability that an arrangement in open line (in
which, as is the case in applying DEs CARTES’S rule of signs, no account is taken of the rela-
tion of the extreme signs to each other) shall contain respectively 2¢ and 2¢—1 variations.
Conceive a circular arrangement of y groups of positive and y groups of negative signs. If
this circle be opened out into a line at an interval between a positive and negative sign (of
which there are 2¢), one variation will be lost; but if at any of the remaining w4v—y
intervals, the number of variations remains unaltered. Hence we derive immediately

2
[ 5 )="222 0,0, ] and [y, g—B)= 1 9

But we may find [p, ’, g—g) by counting the arrangements which give w, », 29—1
variations of sign. These may be <all obtained, and without repetition, by intercalating
every distribution of w into ¢ groups with every distribution of » into the same; and the
intercalation may be performed in fwo ways, according as the parcels of the w signs, or
those of the v signs, are taken first in order. Ience we have
[ V,g—%)=2(“—i)(f_2) vei(p—g+1) —=1)(¥—2)... v—g+1) apmy
’ .2 e (g—1) 1.2 e (9—1)  w(ety)
2aum(u—1)myw(v—1)
Tl (g = 1rG— Drle—g)nl—g)’

and thus

Bty _ wur(p—1)mm(v—1)
I:("’ . !]]— 29 Dj” % g_%—]—'rr(,u.+v+l)wgw(y—-l)vr(y—g)vr(v—y) ’

as previously found ; also

__(ﬂ+v—"9)7rwr(u—-l)7rwr(v—1)
(s s 9)= (et Nrga(g— L) (p—g)7r—g)
MDCCCLXIV. 4N
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(30) Moreover, we thus see that the average number of variations in an open line
with p positive and » negative signs, which is

22—, », g— %)+ 229w, v, 9),
329([w, v, g= )+ (152, 9)) — 2l v. g— 1))

or

will be equal to
2g wt+yv—1 wt+y—1 2py Ty
2291 v, )= 2 S v gl=— 0 329w, v 9= P S

The total number of Variations and continuations together is p-»—1. . Hence the

difference between the two is ot —([x,—l—v 1), or Pf—r—”)———, so that the average

number of variations is greater than, equal to, or less than that of the continuations,
according as the difference between the numbers of the two sets is less than, equal to, or
greater than the square root of the entire number of signs. Obviously the average
should be the same for the variations as for the continuations if the number of signs,
say n-+-1, is given, and each is supposed equally likely to be positive or negative. This
is easily verified ; for multiplying the probable value of each distribution of signs by the
probable value of the number of variations corresponding thereto, we obtain the series

n—1

e LR D) 2=k D 3a—2 = R
This is the final average of the number of variations of sign, and will be equal to that
of the continuations, since the entire number of the two together is n.

Received October 27, 1864.

Parr IIL.—ON THE NATURE OF THE ROOTS OF THE GENERAL EQUATION OF THE
FIFTH DEGREE.

(31) In a foot-note, Part IL. of this memoir, I have shown that when the discriminant
of the canonizant (constituting an invariant of the twelfth order) of an equation of
the fifth degree bears a particular sign, the character of the roots becomes completely
determined by the sign of the discriminant of that equation.
~ This has naturally led me to investigate de novo the whole question of the character
of the roots of an equation of that degree; and I have succeeded in obtaining under a
form of striking and unexpected simplicity the invariantive criteria which serve to
ascertain in all cases the nature of the equation as regards the number of real and
imaginary roots which it contains; then passing to the expression for these criteria in
terms of the roots themselves, I obtain expressions which exhibit the intimate connexion
between this subject and a former theory of my own relative to the construction of the
conditions for the existence of a given number and grouping of equal roots, which can
hardly fail to lead eventually to the extension of the results herein obtained to equations
of any odd degree whatever. It is the more needful that these results in a question of
so high moment to the advancement of algebraical science should be made public, inas-
much as they do not seem to accord with those obtained by my eminent friend M. HErMITE,
who has preceded me in this inquiry in a classic memoir, published in the year 1854 in
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the ninth volume of the Cambridge and Dublin Mathematical Journal, since which time
I am not aware that the subject has been resumed by any other writer. The discrepancy
between our conclusions may be only apparent; but there can be no doubt of the supe-
riority of the form in which they are herein presented, inasmuch as only three functions
of the coefficients are required by my method, and five by M. Herumite’s. The solution
offered by M. HERMITE is confessedly incomplete, but to this great analyst none the less
will always belong the honour, not only of having initiated the inquiry, but of having
emitted the fundamental conceptions through which it would seem best to admit of suc-
cessful treatment. The arrow from my hand may have been the first to hit the mark,
but it was his hand which had previously shaped, bent, and strung the bow.

Our methods of procedure, however, are widely dissimilar, and by employing my well-
known canonical form for odd-degreed binary quantics, long since given to the world, I
have succeeded in evading all necessity for the colossal labours of computation required
in M. HeErMITE'S method, and am able to impart to my conclusions the clearness and
certainty of any elementary proposition in geometry, not scrupling to avail myself for
‘such purpose of that copious and inexhaustible well-spring of notions of continuity which
is contained in our conception of space, and which renders it so valuable an auxiliary to
Mathematic, whose sole proper business seems to me to be the development of the three
germinal ideas—of which continuity is one and order and number the other two*,

SzcrioN L—Preparation of the General Binary Quantic of the Fifth Degree.

(32) Let (a, 0, ¢, d, e, (Y&, y)*=F(a, y),

a cubic covariant of ¥ is the canonizant C, where C represents the determinant
a b ¢ d
b ¢c d e
¢ d e )
yﬂ - y2x ya;ﬂ . xs_

Let us first suppose that this form does not vanish identically, and has at least two
distinct factors £, 7 linear functions of &, y, where of course & 7 are each of them
determinate to a constant factor prés; giving any value to the constant factor for either
of them, we may write F(2, y)=®(&, n)=(«, 8, ¥, 9, ¢ +{& 7)’, and the canonizant of @
with respect to &, z becomes the determinant T, where T represents

o By @
By o ¢
y 0 ¢

7 —rE 78 —&.

* Herein I think one clearly discerns the internal grounds of the coincidence or parallelism, which observa-
tion has long made familiar, between the mathematical and musical #6os. - May not Music be described as the
Mathematic of sense, Mathematic as Music of the reason? the soul of each the same! Thus the musician feels
Mathematic, the mathematician thinks Music,—Music the dream, Mathematic the working life—each to receive
its consummation from the other when the human intelligence, elevated to its perfect type, shall shine forth

glorified in some future MozarRT-DIRICHLET or BEETHOVEN-GAUsSs—a union already not indistinctly foreshadowed
in the genius and labours of a Hrrymorrz !

4 N2
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Hence since T to a constant factor prés is identical with C, the coefficients of s*and £ in
the above determinant must vanish in order that £ may be contained in T.
Hence the two determinants ‘

o7 R
e
=]
[=¥]
7R ™

Y
o«
-

X W R
o7 2 >

both vanish.
Hence either «, 3, v, or otherwise v, d, ¢, or else the first minors of

B v
y
d ¢

are each zero.

The first two suppositions must be excluded, since either of them would lead to the
conclusion of T, and therefore C, being a perfect cube, contrary to hypothesis. The last
supposition implies either that B, , 8, or otherwise that v, 9, ¢, or else that 38—¢? and
ve—0* are each zero.

If B3, v, d are each zero, T becomes a multiple of #%; if ¢, 3, ¢ are each zero, T becomes
a multiple of #£%; that is to say, T, and consequently C, contains a square factor; and

obviously the converse is true, so that when C contains a square factor F is reducible to
. 2 92
the form au®+4Sewv'+fv°. When this is not the case 6= %, =2 :%{;- Hence

F= (a=E)e+ 2(e+Dn) + (=57,

which is of the form »*+4¢°+{*, w, ¢, +/ being linear functions of z, y.

(33) We have supposed C not to be a perfect cube. When it is a perfect cube, say
£, we may assume 7 any second linear function of , ; and expressing F in the same
manner as before in terms of &, 5, it is clear that all the first minors of

« B y 9
B v ¥ ¢
vy 3 ¢

except the one obtained by cancelling the last column in the above matrix, must vanish,
consequently 9, ¢, ¢ must all vanish, so that @, and consequently F, must contain a cube
factor identical with the canonizant itself. - ;

Lastly, if the canonizant vanish entirely, every first minor in the above matrix, when
we write again @, b, ¢, d, e, ¢ in lieu of «, B, v, 9, ¢ 4, will be zero. Hence either
a, b, ¢,d,orb,c d, e, orec, d,e i must each vanish, or else that must be the case with
‘the first minors of

a b ¢ d

b ¢ d e
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or of
b ¢ d e
¢c d T,

or of
a b ¢ d
d e .

Under the first or third supposition F must contain four equal factors; under the
second @ becomes ag’+is°; under the fourth or fifth it is readily seen that the form

becomes
b \*® AW U PR e \®
a(%-l—;n) + (z—;)n, or (a—;>% +i (77+-i«§>
respectively, so that the second, fourth, and fifth suppositions conduct alike to the form

«°+4¢°, a particular case of the preceding one.
It remains only to consider the sixth supposition, viz. that the first minors of

a b ¢ d

¢c d e 12
are all zero.

~ In this case if we write ~ ~
\/ ar- \/ cy=1u,
N ax—s/ cy=v,

1
A+B=5,

b
A—B=23’

and if neither @ nor ¢ is zero, it will readily be seen that F(«z, y) becomes Aw’-}Bv* by

virtue of the relations
¢ c\ 2 . c\?2
——;i b, o= (5) a, 1= <Z> 6(29).

If =0 or ¢=0, the preceding transformation fails.
But unless also =0 or ¢=0 at the same time as =0 or ¢=0, a legitimate transforma-
tion similar to the above may be performed by interchanging e, ¢, «, ¥ with ¢, a, g, 2.
If now
a=0, it will easily be seen that @, , ¢, d or else a, ¢, e are each zero.
Similarly, if
~ 1=0, it will easily be seen that ¢, ¢, d, ¢ or else ¢, d, b are each zero.
Again, if Cor
¢=0, it will easily be seen that a, &, ¢, d or else ¢, e are each zero;
and if
d=0, it will easily be seen that ¢, d, ¢, ¢ or else  d, b are each zero.

(*) Thus we see thaf the equation az®+ 5ba*+ 10aca® +10bea? + Sac’a + be*=0 belongs to the class of soluble
forms,
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Thus, then, if ¢=0 and ¢=0, all the coefficients, or else all except one, viz. & or e, are

ZEer0 ;

if a=0 and d=0, all the coefficients, or else only not ¢ and ¢ or only not &
or only not ¢ are zero;

so if i=0 and ¢=0, all must be zero except & and @ or ¢ or @;

if ¢=0 and d=0, only ¢ and ¢ or else ¢ and 4 or else ¢ and 5 will differ
from zero.

Hence, then, in any case there will be at least four equal roots, or else F is of the form
ax’ iy’

Thus, then, for the first time has been here rigorously demonstrated, free from all
doubt and subject to no exceptions, the following important propdsition:

Every binary quantic function not containing three or more equal roots is reducible to
one or the other of the two following forms, '

wHvw’, or au’++beuvt v,

The former is the case when the discriminant of the canonizant is different from zero,
the latter when it is equal to zero; for it will be observed that, whether the canonizant
has equal roots or totally disappears, its discriminant in both cases alike is zero.

(34) It has been seen that when the quintic has three equal roots the canonizant becomes
a perfect cube; and it may not be out of place here to point out what the conditions
(necessary and sufficient) are to ensure the quintic having four equal roots. These are
all comprised in that of the quadratic covariant vanishing. * To prove this, let 4 be a factor
of F(z, ), so that

¥z, y)=D(z, n)=(e, B, 7, 3, &, 0, #)".

Then, since the simila;r covariant guoad &, y must also vanish, we have

we—4B049*=0, —38B:+2p0=0, —4ye35=0.
If e=0, then 8=0, y=0 by virtue of the two extreme equations, and @, and therefore
F, contains four equal factors. If ¢ is not zero,

KA 53t

O S L 5¢ [0 ‘
=1 B=5z" z=7gs> and @ becomes 16x<;x+2n) ;

so that, as before, there are four equal factors. Conversely, it is obvious that if there
are four equal factors u, so that ® =au’+5du'v, the quadratic covariant of @ disappears.

(35) The quadratic covariant also it was which led me to perceive the transformation
applied in the antecedent article. For when the first minors of

e b ¢ d
c d e f
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are all zeros, the quadratic covariant becomes
4(*=bd)a*4-4(d*— ce)y’.
Supposing neither of those coefficients to vanish, and calling its two factors » and v, and
making .
F(JZ‘, Yy )(I)(u, v):(“a 67 e Ba 2 ZI“) ’0),

it is clear that the minors of _
w B vy 9
y 0 ¢ @

can no longer all be zero, since in that case we should have
4(y*— 30w+ 4(0* — e )v*

containing u, v as factors. Consequently the canonizant of ® must vanish under one
or the othex of those remaining suppositions which had been previously shown to con-
duct to the form au®+0v®, or else to the case of three or more equal roots. When the
quadratic covariant vanishes, we know that there must be four equal roots; and when
it becomes a perfect square but does not vanish, it will be foundbon'examination that
the equation has three equal roots. ’

(36) Returning to the general case, where ®=u’+v*+w’, and making Z—%—l- %—I—g
w

;3 respectively, ® becomes 7u/° +-sv/* -t/ s,

identically zero, and writing «', ', w' for %, 8%7
or, if we please, 7u’-+sv°+¢w’, with the condition u+b+w= 0.

Moreover w, v, w will all three be factors of the canonizant of F. For taking the
canonizant of I with respect to u, v, it becomes

r—t —t =t =i ( 1 0 0 0 ‘l
—t —t —t —i 1 =1 =1 =1 |
—t —t =t s—t 7)1 -1 -1 1|
¥ = vt —ud i— ) -

or rst(uv’+ovu?), 1. e. —rst(uvw).

Hence if #+-¢y, +fy, @+gy are three distinct factors of the canonizant of F with
respect to @, ¢, if we choose the ratios A : @ : v so that Adp—4»=0, er+futg=0, we
may make u=n(2+¢y); v=w(@+fy); w=vx+gy); and shall then have

F(z, y)=ru’+sv°+¢w’, with the condition w-}v4+w=0,

where 7, s, ¢ may be found from three equations obtained by identifying any three of
the six terms in F with the corresponding terms r7u’+-sv°4-¢w® expressed as a function
of 2, y. These equations being linear, it follows that ru’, sv*, tw® form a single and
unique system of functions of , .
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So when the canonizant has two equal roots and is of the form C(z-+py)(2+¢y)*; in
which case the reduced form is au’45euv'+fv’. The canonizant in respect to , v
becomes

0 0 0

a
0 0 0 e
0 0 e Ve

v = v —u,
1. e. ac®w®. Hence, writing

u=a+py, v=a+qy, F=au'45eur'+fv,

a, ¢, f may be obtained, as before, by means of three linear equations, and the terms
aw’, Seuv', fv’ form a single and unique system.

Finally, when the canonizant vanishes entirely, so that the form becomes au’+f*,
the quadratic covariant will take the form C(a-+ey)(z+fy); and making w=z-+py,
v=a--gy, a, f become determined by means of two linear equations, so that au’, fv°
form a single and unique system, as in the preceding cases.

(37) When the canonizant has three distinct roots, they may be all real, or one real and
the other two imaginary. In the former case, in the expression 7u°+sv°+tw’, u, v, w may
be considered as all real functions of @, y, and 7, s, ¢ will then also all of them be real.
In the latter case w may be taken as a real function of @, y, u, v as conjugate imaginary
functions; and consequently it is easy to see that, except when 7, s are equal to each
other, they will constitute a pair of conjugate imaginary quantities: in this case we may
take for our canonizant form | \

—u+w\° —u—w\°
7"(\ 5 )—i—s( 5 )—i—t@ﬁ;

or, if we please,

ru; 4 sv} - tw’
. —ut+w —u—iw . . .
understanding by u,, v, » respectively. And it should be noticed that

the determinant of u,, v, in respect to u, v will be

_1i
2 2

_1 oo
2 2

which is <.

(38) Let us proceed briefly to express the invariants of 7u°+sv®+#w®, which call @,
with respect to u, v; the corresponding ones of ru}+sv’+4-tw®, which call @, in respect
to the same variables u, v will be found by attaching to these suitable powers of 4.

O=(r—t, —t, —t, —t, —t, s—iY u, v)’
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Hence its quadratic covariant is the quadratic invariant of
((r—t)u—t'v, —tu—1tv, —tu—1tv, —tu—7iv, —tu+(s—t)vy v, @')4,
which is obviously
—rtw’ —stv* -+ (rs—rt — st uv.
Of this the quadratic invariant is
1t st—3(rs—rt—st)*;
or writing e=st, s=1¢r, r=rs, and calling this invariant (I),
(I)=—%(’+o*+7°— 200 — 207 —2rp).
. Again, the cubic covariant or canonizant has been already shown to be rst(wv-+uv®).
Calling the discriminant of this (L), we have
(L)=— s (%)= — Frg's’s".
Again, to find the discriminant (D) in respect to w, v.
When ru®~+sv°+4tw’=0 has two equal roots, and u-+v+w=0, it is easy to see that
we have rut+4-r=0, sv*4+r=0, tw*4r=0.
Hence to a constant factor prés (D) will be the Norm of
(st)F - (trp 4 (rs), i. e. of ghota¥ (M),
To find the value of this norm, suppose g% +o*47#=0, then
odotr=2(c* totr +igh),

and

¢+’ 7" — 200 —2¢7 — 207= SQ%G%T%(Q%+U%+T%).
Hence
(o’ +7"—2¢0—2p7— 207)’= 64@0’7{(g+6+r)+2(g‘}‘0‘%—I—o"%‘z"lf-l—q'%g%)} =128¢s7(¢+6+7).

Hence (D) must contain (J)*—128gs7(¢+04-7) as a factor; and since when ¢=0, ¢=0,
o=0, and (D)=+'=(J)’, it is clear that (D)=(J)’—128(K), where

(K)=¢o7(¢+o-+).

(39) Although in the investigation in view (K) will only figure as an abbreviation of
@igé—m','it may not be amiss to indicate a direct process for finding it. Let us for this

purpose act upon the Hessian of @, treated as a function of w, v twice with the canoni-

zant of ® converted into an operator by substituting %, -—dil- in place of % and v.
e
' . 7t rst s .
(*) For this is (0, T g 03w, v)?, and the diseriminant of (a, b, ¢, d v, v)* is
@d? 4 4ac® 4 4db® —3b%*— 6abed. .
(*') Ttis worthy of observation that (J )is also a Norm, viz. of p¥+o¥+7%, so that (J) is the discriminant of

ru*+sv®+tws. 1 have not been able to perceive the morphological significancy of this relation.
MDCCCLXIY. 40
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The Hessian of @ may be obtained without difficulty under the form

rsu** st - trw'u® or su’+gv’w’~-own’ ().

r 82#2 (dv du (du dv))

we obtain gor(Ar+Be-4-Cos), where

Y ZANZ A Ve
A_—2<%) (%)w_ 79

and as we know that this quantity must be of the form A(K)4u(J)?, we have p=0,
A=—"T2; so that, denoting the operafor corresponding to the canonizant by T, and the
Hessian by H, we have (K)=—+;T°H® (**). This gives a ready practical method for
finding the discriminant of a general quintic F by means of the identity D=J*415T"H,
where D is the discriminant, H the Hessian, T the canonizantive operator, and J the
quadratic invariant of F in respect to its own variables.

(40) If now we suppose the determinant of u, v in respect to #, y to be u, where w
is by hypothesis a real quantity, and if we call the

Operating upon this with

Quadratic invariant in respect to ,y . . —%J,
Discriminant of primitive ,, - . D,
Discriminant of the canonizant ,, .. =5l

we have obviously
J =p"(’+ o7 —206— 27— 207),
K=p*es7(¢+0+47), D=J*-128K, invariants of @.
L =H‘30g20.27.2’ '

This applies to the case where the reduced form is @, ¢. e. where the roots-of the cano-
" nizant are all real, and consequently where —L is negative, ¢. ¢. L positive.

When L is negative and the reduced form is @, then, since the determinant of u,, v,
in respect to u, v is 7, we have

J =— (4o’ +72—2¢0— 207 —207),
K= p"eor(g+o+7), D=J"—128K, invariants of @,
30,2.2_.2

L_‘—fb ¢’o’7,

By means of the ratios_ 7 ‘I,—i:, it is obvious that in either case alike the ratios of ¢, o, 7

(*®) It will be the quadratic invariant of 745>+ sv’y®+ tw¢® with respect to £, 4, L+ ¢ being zero; just as
the quadratic covariant of @ is the quadratic invariant of ruf*+svy*+tw¢! with regard to the same variables.
This latter is in fact rsuv 4 stvw 4 trwu,

(*) The intervening covariantic form of degree 3 in the variables and 5 in the coefficients, viz. TH®, will

casily bo seen o be rst(uPv—uv?)+ stri(viw—vw?) + trs*(wu-—wu?).
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become determinable by means of the same cubic equations, viz.

63—K6’+K22JL6—-L2=

g, o, = will be to each other as the roots of this equation(*).

(41) Since ru*+sv°4tu® represents a function in @, y with real coefficients, it follows
that when L is positive, #, v as well as w being real, a: 3: y are ratios of real quantities,
and the roots of the preceding cubic will be real; when L is negative, %, v becoming
conjugate imaginary functions of 2, y, whilst @ remains real, 7, s, unless they are equal,
must become conjugate imaginary constants. ‘When 7, s, ¢ are all real, g, o, 7 will be so
too; and when 7, s are imaginary and ¢ real, ¢, ¢ will be imaginary and = real. Thus
according as L is positive or negative the roots of ¢ are or are not all real. Hence
understanding by A the discriminant of the preceding equation with respect to dand 1,

% must be always either zero or negative. We see ¢ priors that — must be integer,

because when Li=0 the cubic has two equal roots, ? To compute its value more con-

veniently, write K=6%,J =12j. Then the equation becomes
(1, 2k, 3k*—jL, L4, —1)?,
of which the discriminant is | '
L+ 438 —jL) + 32/17”L2 —127%(8k* —jL)*—12kL3(8k* —jL).
Hence
£ =15 —108%Y+ 3645 L— 4°L*+ 32K°L
+ T2%4—12F%°L —364°L+412jk1?
=I1’— 86k% 42455 L—4jT2— 4F°L+12KL2,
Accordingly, multiplying the above equation by —3:12* in order to avoid fractions,
replacing £, j by their values in terms of K, J, and naming G the quantity —432 2,

(*) For since the absolute values of g, o, = are not in question, we may consider ¢, o, 7 s the Toots of
*—K62+gb—r, so that p+o+7=K. We have then
glotrt By r I
(eory(g+o+ry K TGN G
which gives r=I12% Again,
orK? - K2 K2—4q)?
(Kz—- 4q)2=—JE s Or g_rql J2, or (Kz 49)2 L2J2 or g=
As regards the sign to be given to JL in ¢, since
P_E—dg) K—dg)*

K‘*"‘ IL

L r 1
we have (K°—4q)*=J°L?. Hence »
K*— 1%L
= 4 - .
Consequently
q=K2ZJL, and xat K2ZJL

402
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positive, or to speak more strictly non-negative, we have
G=JK*4-8LK*—2J*LK*— T2J K — 43212 - J*L2 (*).

It is evident that G must be identical to a positive numerical factor prés with the

function which M. HErmITE denotes by I*(*).

(*) It will be observed that when J=0 and L=0, G vanishes. This is easily verifiable @ priory; for when
J=0 and L=0, the reduced form has been seen to be aa’+ 5Seay?, of which the canonizant is

a 0 0 0
0 0 0 e
0 0 ¢ 0
ys _y2w ym2 —a®

which equals aexy?,

Hence the form and its canonizant have a common factor x, and consequently their resultant vanishes;
hence I=0 and G=I*=0. G also vanishes when K=0 and L=0, which is also easily verifiable; for then
the reduced form becomes «®++°, of which the canonizant vanishes, and consequently the resultant of the form
and its canonizant becomes intensely zero; which accounts for the high power of K in (JK*), the sole term of
G in which L does not appear.

(*%) (*) Compare expression for 161% Cambridge and Dublin Journal, p. 203. This will be found to contain
nine terms, and to rise as high as the fifth power in A (which to a constant factor prés is identical with my J);

whereas in ——L—é there are only six terms, and no power of J beyond the third. This seems to indicate that the

K and L are more fortunately chosen than M. Hurmrre’s J,, J,, which are invariants of the like degrees 8 and
12. It is of course evident that the following rclations exist between M. HerMrte's A, J,, J, and the J, K, L

of this paper, Al

J,=mJ* 42K,
T, =pd+ I K 4L,
where 1, m, n, p, ¢, r are certain numerical quantities. Until these are ascertained, it is impossible to con-
front M. Heruire’s results with my own, to ascertain whether or not they are identical in substance, and, if
not, wherein the difference consists., I therefore subjoin the necessary calculations for effecting this important
object. . :
Let us first take the form w5+5exy +%° The quadratic covariant of this is a(ex+y).

Accordingly, to obtain M. Hermire’s A, B, C, ¢!, B', A’ (Cambridge and Dublin Journal, vol. ix. p. 179), we

must make

x=X; er+ Y =Y,
which gives (vide C.and D.J. p. 180)

F=X545¢X(Y—eX)*4 (Y —eX)®

- =(A,B,C, 0, B, AYX, Y),
where
A=144¢, B=—-38¢, C=2¢, ('=—¢, B'=0, A'=1.

Accordingly (vide C.and D.J. p. 184),

AA'—3BB' 4 200=1+4¢— 4e=1 -«/K,
! ! ) —
AA'4 BB'— 200'=144¢4 46=14 Se'= NAS,
AA'+5BB/ 4+ 1000/ =1 4 46— 208 =1 — 1665—271@’
Hence A=1, L=2416¢, I,=2—32¢.
Again (vide C.and D.J. p. 186. § vii.), ‘
8T, =L,—A*=1416¢, 24J,=I,—2LA+A%=—1—64¢;
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(42) In fact M. HERMITE'S octodecimal invariant is most simply obtained as the result-
ant of the primitive quartic and its canonizant. Using the reduced forms for these two

but J,, J, are subsequently without warning (compare expressions for AA', BB, CC', pp. 186, 192) renamed
U Ja’ so that 87, =1416¢, 24J...—-1 64¢°,

The corresponding values of J, K, L have been a}ready calculated, and we have found
J=1, K=—2¢, L=0.

Hence B )
_ 1 5 R —1 64 s
A=1, §+2e =B—2C¢, 51 ~94¢ F=D—21¢,
Thus ;
1 1 4
A=1, B='8', C=—1, D_—Q‘l E——-:--

To find F, take another form convenient for the purpose, as ®+ 10da%y3+ 5.
Taking the emanant of this (.z', 0, dy, dx, y:(.fc' s y’)“, the quadratib covariant is obviously 2y + 3d%?, so that
J=1. .
Also its discriminant is ’
1 0 0 d
0 0 d 0
0 .d o0 1
R ’_ygx ya? —a
viz, d*y®—d(—da® + i) =d%y —dy e+ d%a?,
of which the discriminant is

d0 4 4dz(:‘_l)3= AL Shds,
3

Hence by definition L=e—2law4 dv.
“Again, to find A, B, C, ', B!, A, we must write
z+3dy=X,
y=Y,

and we have then :

(X—=3Y ) +10d(X -3Y)*Y*+Y*=(A, B, C, ¢, B, AYX, Y).
Since J=1 and X is of the eighth order only in the coefficients, it is obvious that neither J% nor JK can contain
a term involving d'°. 1In order therefore to find F, it will be sufficient to compare the coefficient of ' in J,

and in L. ,
Now A=1, B=-3d%, (=94, C’—-27d5+cl B'=81d8—12d%, A'=243d"+4-90d°+ 1.

Also A=T _1 Hence neglecting all but the terms Whlch bring in d'°, 24J (p. 186, Memoir) is tantamount
to I,, and I, (p. 186) is tantamount to
2(243d"°—5.3.81d"+10.9.274"),
which is
12 x 243d1.
"Hence in J, the term containing d* is 242,
Hence —21F=213, or F=-18.

Hence we have, finally,
A=J,

I,=—K+1J2,
Jy= —18L+ 4JK —57J?
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functions,

rutsv—t(u-tv);  rstuv(u-o),

and conversely,

J =A,
J 2
K= §+8A
3, 2 1
L==3— 2 AJ,+2A3
18 27 2“Lzs

Unhappily a farther step is wanting to bring M. Herurre’s' results to the final test of comparison; for the
value of AA! (p. 192) does not agree with that given for AA' (p. 186) by simply changing J,, J, into J,, J,
respectively; a further change of A into 2A becomes necessary to make the ratios of AA!, BB', CC' (p. 192)
accord with the ratios of the same quantities at p. 186. Finally, even after making this change the expréssion
for 1617 (p. 203) does not accord (even to a constant. coefficient prés) with, that with which it is meant to be
identical, viz. 16I% (p. 187); so that after great labour I am still baffled in my attempt to ascertain the agree-
ment or discrepancy of my conclusions with those of my precursor in the inquiry. As will appear hereafter,
the two sets of conclusions are undoubtedly discrepant in form; but whether they are so in substance or not, or
rather whether they are or not in contradiction to each other, requires a close examination to discover, the more
especially because, as will hereafter be shown, there is a certain necessary element of indeterminateness in the
scheme of invariantive conditions which serve to fix the character of the roots. It is greatly to be lamented that
so valuable a paper as M, Herurre’s should be to some extent marred, in respect of the important end it would
serve as a term of comparison, by the existence of these numerical and notational inaccuracies. I have spent
hours upon hours in endeavouring to reconcile these several texts of the same memoir, and, after all my labour,
the work is left unperformed without which the truth as between the two methods cannot be elicited. I feel,
however, as confident of the correctness of my own conclusions as of the truth of any proposition in Euclid. -

(®) It is worthy of notice that there is a failing case in M. Herarrs’s process for finding I? in terms of A, J,,
J,, just as there is one in mine for finding G in terms of J, X, I,—the failure of the process, however, in neither
case entailing any corresponding defect in the results obtained. The process employed in this memoir fails
when L=0: for then the general form ru’+sv®+ fw® is superseded by the supplementary one, au5+5éuv‘,* + /.
M. Herurre’s fails when J (the J of this memoir) =0 ; for then the quadratic invariant becomes a perfect square,
and the substitution of its factors in place of the original variables becomes inadmissible, since the two former
coincide.

(°) It may be as well here to notice the form which M. Hermrre’s two linear covariants assume when
referred to the canonical form above written. The quadratic covariant being rsuv + stvw+ trwu, if we operate

d d _d.

with the correlative of this obtained by writing in it % iy Al in lieu of w, "u, w, iz,

d d drd d d_d
-1 e =St ——— r—( ————
"’ du(du dy + Tdv(du dv)

upon; the pnm1t1ve, we obtain toa factor prés the canonizant rstuvw, which has been already obtained; repeating
the process, it is easy to see that the first linear covariant of the fifth degree in the coefficient assumes the simple
form 7rst(stu+trv+rsw), or rst(pu-+ov4-7w). Taking again the correlative of this, viz.

d d ., (d d\)
T ALY L
s (S’dv a-clu+'r(c_lu dv))’

and operating with it upon rsuv 4 stvw+ trww, it will be found without difficulty that the second linear covariant
of the seventh degree in the coefficients becomes .
rst{(e—1)(o+T—p)ut (r—g)(r+o—W+(p—0)p+o—Tw}, o
which is distinguishable in species from the former one by its symmetry being only of the henithedral kind.
(% It may notbe out of place to notice here that the Hessian of the canonical form will be found to be
. 9v3¢w3+o'w3u3+ru%3.
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their resultant in respect to , v is obviously

(rst)(r—s)(s=2)(E—)(");

(°) Again, if we write
rst(putovtrw)=§
rst(w—=r)(o+7—g)u+(r— )7+ 9-o-)v+(9—-o-)(g +o—7)w)=9y,
ut+v+w . =0,

and from these equations deduce the values of u, v,w, and substltute them in ru5+sv5+tw5, we shall obtain
M. Herurre’s ¢ forme-type ” expressed in terms of the parameters of the reduced form, and every‘coefﬁclent
therein will be invariantive. ;

- The resultant of the equations above written (on making £==0, ¢{=0) will appear in the déenominator of each
such coefficient. Hence it appears, from M. Hermire’s expressions (Camb. and Dubl. Math, Journal, vol. ix:
p- 1983), where J, will be seen to enter into the denominator of A, B, C, €', B/, A’, that this resultant to a factor
pﬂs is his J,. - Its value may easily be calculated, and will be found to be

go"r(g-i—a'+7)3—-4(g+a'+f)(go'+g’z‘+ o7)+9por=JK 4 9L.

Accordingly as L (to use Dr. Saraox’s convenient elliptical expression) is the condition of the- failure of my
general reduced form, so is 9L+ JK the condition of the failure of M. Hermrre’s ¢ forme-type.” As pa.rtlcular

cases of this last failure, we may suppose J=0, L=0, or K=0, L=0. In the former case the reduced form is
am5+5ew“ , of which the simplest quadratic and eublc covariants are respectively mea?; ay’z. Thus to find

L the first lmear covariant, we have to operate upon ae*y%r with ae(—) which glves a?éx; and to find L,, we

have to operate on (ace.7z,-2)’z with aez(—-) 5> 0T if we please (according to M. HERMITE s method), with (a 33; )
Y

on aex?®, showing that L, vanishes, but I, contmues to subsist. When, secondly, K__. 0, L=0, the reduced form
i @2’ 4-ey®, and the canonizant disappears entirely, so that the first, and consequently also the second, lineas
covariants, each of them becomes a null.

(¥) By aid of the reduced forms of the invariants J, X, L, I given in the text, it is easy to prove that every
other invariant, say Q of a quintic, is a rational integral function of these four. In what follows, let a paren-
thesis enclosing the symbol of any invariant signify its value when any two of the quantities u, v, w in the
reduced form ru®+4-sv°+#w’; [w+4v+w=0] are taken as the independent variables, We have then

=g+ 45 —2p0—2r—207, (K)=por(p+o+7), (D)=¢"%", (D= (g—0)(c—7)(r—0),
607 meaning st, ir, st.

The degree of @ must be of the degree 4m or 4m+2. 1. Let it be of the form 4m. Then, since the in-
terchange of any two of the variables u, v, w must leave (Q) unaltered, (Q) will be unaltered by the interchange
of any two of the letters r, s, ¢, and is consequently a symmetric function of g, o, 7, the roots of the equation

~ &) o ®P=DA)_ gy,

(L)¥ @
Hence
@ _F(@), &), (L))
(L)zm
T denoting a rational integral function-form of the quantities it affects. Consequently
_F(J,K, L)
S PR

‘Hence since £ cannot become infinite when L=0, which merely implies that the general form reduces to

(@,0,0,0,¢ i e y),
Q=a&(J, K, L), a rational integral function of J, X, L.
2. Tf the degree Q is of the form 4m 42, (Q) will be a function of », s, #,"which changes ifs sign when % and v
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and consequently, if we call I the resultant in respect to x, y, we have
I =p e’ (6 —g)(r—0)(¢e—7°),

P=p"g's'v (s —g)(r—0)(¢—7)’
=p"(0—¢)'(r—o)(¢—7)L2.

(48) Thus we see that the two quantities G, I?, which are both rational integral
functions of the degree 36 in the coeflicients of F(«, y), cannot one vanish without the
other, at all events when L is not equal to zero. This is sufficient to show that they are
identical to a numerical factor prés, whatever L may be, zero or not zero(*), and con-
sequently that the quantity called G, proved to be positive upon the supposition of L
not being zero, must also remain positive when L is zero, because it is in fact the square
of a rational function of the coefficients. But we may also prove this independently
by virtue of the supplementary reduced form aw’®-+5euv'+-fv* applicable to the case of
L zero.

For when L=0, G becomes JK*; so that the condition *“ G not negative” implies
simply that J is positive unless K vanishes.

Now the canonizant, when it does not vanish, 1. e. when ¢ is not zero, contains v* as
a factor, and, its coefficients being real, u, v are both of them necessarily real functions
of z, 9. Consequently J, which by definition is —4 X discriminant of quadratic cova-
riant, becomes —4p' X discriminant of au(eu-fv) in respect to u, v, which =p"a*?, w
being real. Consequently J is positive, since the reality of u, v implies that of «, e, f,
when ¢ is not zero. When ¢ s zero u, v may be either real or imaginary ; for 4°+v° may
be real whether u, v be real or conjugate imaginary functions of &, ; but in that case
K, which is found by operating twice upon the Hessian with a canonizant turned into an
operator, vanishes, since then all the coefficients of the canonizant vanish(*). Hence
the rule that G cannot be negative is scen to be true, whatever L. may be.

and

or any two of its quantities u, v, w, are interchanged, such interchange having the effect of introducing as a
multiplier the 5(2m -+ 1)th power of the determinant of substitution (—1). Hence (Q) is of the form

(9——‘0‘)(0'—7‘)(7‘—-9);[“(9, o, ), 1. e. LM%)’TO'—’L),
which again is of the form )
@O.F(@), (K), (L))’
(L)zm—s

so that  is of the form

Hence since, as before, Q cannot become infinite when =0, and since, furthermore, I does not vanish (for if
so then G, which is I?, would vanish) when L=0, Q must be of the form Ia(J, X, L). Q. E. D.

(**) For if *=KT* for an indefinite number of systems of values of a, b, ¢, d, ¢, f, of which Q, I are rational
integral functions, Q* and KI2 must be absolutely identical ; this of course is the case when Q? and KI2, as proved
in the text, are known to be identical for all values of , b, ¢, d, e, f which do not make L zero.

(*) (*) In the more general form aw’-+5euv'+fo?, taking p=1. The canonizant is ac®w®; this squared and
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It may be said that the case of three or more equal roots existing in F (z, ) has been

2 4
turned into an operator becomes aZ* (C%) ( di) , Which, applied to the Hessian, viz. 3aeu*v®+ afuv®—e%b, after
U,
multiplying by —-;, gives K=—24%", so that D=J*—128K=uq"f*+2564%, which is capable of easy verifi-
cation. In fact D becomes the resultant of auf+ ev* and +*(4eu+fv); +* introduces the factor ¢® into D ; and
further, making w:v:: —f: 4e and substituting in au®+ ev?, we obtain the other factor af*+4 256¢°.

If we adopt »°+ 5euv® ! as the reduced form for the failing case (a form analogous to the well-known one,
u*4- 6eun®+ o, for the general quartic), to find ¢ we have J=p!%, K=—2u%. Hence ¢*=— 2£J2; thus when

K=0, ¢=0. _

(*) By a linear transformation we may always take away any two (except the two first or last) coefficients of
a given quintic, but the vanishing of more than two coefficients always corresponds to some invariantive con-
dition. Thus, ex. gr., in the form

a2’ + Sexy* + fy L=0

ax®+fyt L=0 K=0

ax® + Sexy? L=0 J =0

ax’ 4 10da%y? J=0 K=0

o’ + 5bar'y 4 10ca™y* L=0 J=0 K=O0.

(°) The condition for the existence of four equal roots in a quintic is the vanishing of the quadratic covariant ;
that is to say, we must have

ae—4bd+30*=0, af—3be+2ed=0, bf—4ce+3d*=0.

The three quantities equated to zero are not separately invariants, but constitute in their ensemdle an invarian-
tive plexus.

(9) [It may here be noticed incidentally that the conditions for equal roots in the biquadratic form are
as follows. For two equal roots, of course, the diseriminant is zero, for three equal roots the two lowest in-
variants are each zero, and for two pairs of equal roots the Hessian (A, B,C, D, EIm, g/)‘* becomes to a factor
prés identical with the primitive (a, b, ¢, d, e}[x, y)“, so that all the first minors of the matrix

a, b, ¢, d, ¢, f
A, B, ¢, D, E, F

vanish. Quere, whether the character of the five-rayed pencil (centre at origin), in which a, A; b, B; ¢, C;
d, D; ¢, B mark points, may not serve to distinguish between the case of four real and four imaginary roots.]

(°) When J=0 and K=0, but not L=0, it is obvious that p: ¢: 7:: 1:4: 4 4 being any imaginary cube root of
unity, and the reduced form is v’ 4 s0® +4%0®, with the relation u+v+w=0.

J and K being zero, D will be so too, and accordingly the equation 4°+s®+Pw’=0 will have two equal
roots. It will easily be found that these equal roots correspond to the system of ratios u=1, v=:2 w=u.
In fact, if we write u=1+p, v=4"+1p, w=1++%, the equation becomes *+ 1’ +*w’=p*(80p 4 3o*)=0.

Hence, understanding by e either of the two prime sixth roots of unity, the complete system of ratios of w, v, w
may be expressed as follows :—

u=1 v=4 w=i

u=1 v=14 S w=i

w=1— ¥10 v=i2— /10 w=i— Y10

u=1+ 10¢ v=g'— ¥/10 w=g+ /10
w=14 {/10 v=g4 4/ 10¢ w=¢g>— /10,

Thus, when J=0 and. K=0, u, v, w (with the relation %+v+w=0) may first be found, in terms of «, y, by
MDCCCLXIV. 4p
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lost sight of ; but we know, and it is capable of immediate verification by taking as the

solving the cubic equation, obtained by equating to zero the canonizant of (a, b, ¢, d, ¢, f Y[, y), and then 2, y

will be known from the above system of values for any two of the quantities «, v, w.

* () Itis obvious that the form aa®+da®?® gives J=0and K=0; but it seems desirable to prove the converse,

viz. that when J=0 and K=0, but not L=0, the form is always reducible to au®+108u*?, which may be done

as follows. Since J=0 and K=0 the discriminant is zero, and we may assume

' F=oa® +5baty + 1002’y + 10da™y?,

and we have J = discriminant of
(—4bd+3c?)E2 + 2cdEy + 3d* 9,

3dX(8¢ —4bd)—c*d*=0;
d cannot be zero, for then we should have =0, K=0, L=0, contrary to hypothesis Hence 8¢ —12bd=0,

Hence

If 5=0 and ¢=0, I is already reduced to the desired form; but if not, d_.m, and F becomes

3b
ax5+—ga:< +.1_2_cxy +62y)
or, making
a=b—a, -
, 6 6
F=a® 410 2%7 as was to be shown.
The corresponding converses for the case of J =0, L=0, and of K=0, L=0 have been already established.
(%) It will be observed that under a certain point of view L for binary quintics is the analogue of A the discri-
minant for binary quartics, the condition of failure in the general reduced form in the two cases being L= 0
and A=0 respectively. The mere vanishing of the discriminant in the case of the quintic function, unattended
by any other condition, does not affect the nature of the reduced form. '
(*) It has been shown previously in the text that when L=0 the primitive is reducible to the form
(2,0,0,0,¢ f Y y).
Hence if I, is any duodecimal invariant which vanishes when =0, ¢=0, d=0, I,, must vanish whenever L
vanishes, and consequently, since L is of as high a degree as I,,, I, must be a numerical multiple of L. In
Mr. Cayrey’s Third Memoir on Quintics, ¢ No. 29” represents a duodecimal invariant calculated by M. Fai
pE BruNo, and characterized morphologically by Mr. CavrEY as being that duodecimal invariant in which ¢ the
leading coefficient ¢ does not rise above the fourth degree.” -On examining No. 29 it will be found to contain
no term in which 8, ¢, d are all simultaneously absent. Hence it is, by virtue of the above observation, a mul-

tiple of my L: to determine the numerical factor, let all the coefficients in the primitive excepta, d be supposed
zero ; then the canonizant becomes

a 0 0 d
0 0 d 0
0 d 0

yS __y?x yw2 ___w3

=d*y 4 ad’2®,

Hence L becomes —27a2dY, but ¢ No. 29” becomes 27¢°d®. Hence we have the important relation
¢« No.29” = —1L, so that No. 29 is a discriminant, an intrinsic property of the calculated invariant, which, I
believe, was not suspected. co

(®) Tt will at once be recognized that ¢ No. 19” given in Mr. Cavrey’s Second Memoir upon Quantics is iden-
tical with the J of this memoir, whence it follows from Mr. CaveEy’s equation (No, 26)=(No, 19)*—1152
No. 26, that K=9 (No. 25). Thus abstraction made of a mere numerical factor, Mr. CavrEY and myself agree
upon perfectly distinct grounds in recognizing K and L as the true simplest invariants of their respective
degrees, an accordance as satisfactory as it was unexpected, and which must be considered as setting at rest the
question of what should be deemed the, so to say, staple invariants of the Binary Quintic..
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reduced form au®+46du*v-410cu*? that on such hypothesis all the invariants J, K, L
must vanish, so that JK* is still non-negative (**).

(44) It is most important to notice that G can only become zero by virtue of two of
the quantities ¢, o, 7, and therefore of 7, s, ¢ becoming equal. 'When %, v are imaginary,
it is the coefficients 7, s which must become equal, as otherwise the reduced form would
not be a real function of #, y. By equating 7 to s, and using as an auxiliary variable

the ratio % or —;—, we shall be able to study the composition and inward nature of G with

the utmost clearness and facility.

SecrioN IL—On the Criteria which decide the Number of Real and Imaginary Roots.

(45) Since in the preceding section we have supposed that w, v are always real linear
functions of , y, it is obvious that the character of the roots of the given quintic in , y
is completely identical with that of the roots in the reduced form, and it has been shown
that only one reduced form corresponds to a given system of values of J, D, L(*).

Let us suppose J, D, L to be taken as coordinates of a point in space; when J, D, L
are so related that the condition G non-negative is satisfied, the point will correspond
to an equation with real coefficients, and may be termed a faculfative point. But
when G is negative it will correspond to an equation of the kind alluded to in the
recent section of this paper, and there called conjugate: such a point may be termed
non-facultative. Thus the whole of space will be divided into two parts, separated by
the surface G=0, which may be termed respectively facultative and non-facultative (as
being made up of facultative or non-facultative points(*?)). It is clear that these two
portions will be exactly equal, similar, and symmetrical with regard to the axis of D;
by which T mean that, if two points be taken in any line perpendicular to the axis of D
at equal distances from that axis, one will be facultative and the other non-facultative,
as is evident from the fact that when J, L become —J, —L (K, and therefore D or
J2—128K, remaining unaltered), G is converted into —G. Thus by a semirevolution

(**) When the form is au® 4 5euv*+ fo® so that L=0, the canonizant, as has been seen before, is ae®v®u; the
resultant of these two is a*¢’a’f=0a’¢'f. Again, J=a’f?, K= —20a’"; thus the square of the resultant =L JK*;
so that if we call this resultant, which we may take as the definition of the Octodecimal TInvariant I, we have
G=16I% ' '

(*) Itshould be well noticed that the mere ratios -?2, % do not suffice to determine the character of the roots,

‘When these ratios are given, it is true that the ratios #, s, ¢ in the reduced form are given, but according as L
is positive or negative, the arguments u, v in 7u°+sv® 4w’ (supposing w to be the real linear function of #, y)
will be real or imaginary. When J, L, D are all given absolutely, then the character of the roots is completely
determined. The indeléble marks of a quintic function are three in number, viz. the ratios %, }—‘3, and the sign

3
of L or J, as for a quartic function they are two in number, viz. % and the sign of s.

(*®) It will also be convenient to call the coordinates J, D, L corresponding to any facultative point a facul-
tative system of invariants, and !]122’ %‘3 corresponding to the same (for a given sign of J) a facultative system of
invariantive ratios.

4p2
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round the axis of D the facultative and non-facultative portions may be made to exchange
Pplaces.

(46) The axis of D itself lies on the surface of G, and like every other portion of this
surface is facultative, for there is no reason for disallowing G to become zero. Con-
versely, if, instead of a real equation, we take one of the conjugate class (described in
the second section), the whole of the facultative portion of space (except the separating
surface G) becomes non-facultative, and the non-facultative part becomes facultative,
but G itself remains facultative. When the invariants, or any of them, become imagi-
nary, we are put out of space altogether, and the system can belong neither to a real
nor to a conjugate family, but to one with coefficients at the same time imaginary and
non-conjugate. G=0(*), it may be remarked, will in all cases be the condition of
an equation capable of linear transformation into one of recurrent (*) form; for the
reduced form then in general becomes ru’+rv*—#(u+v)’. The case when G becomes
zero by virtue of J=0 and L=0, that is to say when the function is reducible by real
or imaginary linear substitutions (see footnote (*) (f)) to the form wu(w'+%*), is the
one which might for a moment be supposed to offer an exception to the rule; but only
the exception is only apparent, since u(u'—v*), on writing u=p-¢, v=p—g, becomes
16(p+9)pe(p*+4°)-

(47) To every point in space, it has been remarked, will correspond one particular
family of equations all of the same character as regards the number they contain of
real or imaginary roots, because capable of being derived from one another by real
linear substitutions, such family consisting of an infinite number of ordinary or con-
jugate equations according as the point is facultative or non-facultative; but it may be
well to notice that, conversely, every point does not correspond to a distinct family. In
fact every point in the curves D=pJ? L=¢J*(p, ¢ being constants) will denote a curve
divided into two branches by the origin of coordinates, one of which will be facultative
and the other non-facultative; but in each separate branch every point will represent
the very same family. Any such separate branch may be termed an isomorphic line;
and we see that the whole of space may be conceived as permeated by and made up of
such lines radiating out from the origin in all directions.

(48) The origin at which J=0, D=0, L=0, as already noticed, corresponds to the
case of three equal roots. The theorem that, when more than half as many roots are
equal to each other as there are units in the degree of any binary form, all the inva-
riants vanish, was remarked by myself originally in the very infancy of the subject,
before Mr. CAYLEY'S paper, alluded to by M. HErRMITE, appeared in Crelle. The method
of proof which then occurred to me is the simplest that can be given. For instance, in

(**) Ishall hereafter allude to the surface denoted by G=0 under the name of the Amphigenous Surface,
as being the locus of the points which give birth to real and conjugate forms indifferently.

(**) The roots of recurring equations, geometrically represented, in general go in quadruplets, A, A’; B, B/,
where A and B, as also A’, B/, are mutual optical images of each other in respect to a fixed line, and A, A/, as
also B, B', are electrical images of each other in respect to a circle of which the fixed line is a diameter—with

liberty, of course, for the images taken in either mode of combination to coalesce so as to reduce the quadruplet
to a simple pair,
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the case before us, if the quintic have three equal roots, we may reduce it to the form
ax®+5ba*y-+10ca®y".
Suppose now, if possible, an invariant of the degreem ; the weight of each term therein,

say a'b°¢’, in respect to & or y would be the same (Viz. %’ﬁ>, so that we should have

“

or4-4s-4- 3t=§;—"=s+2t, or 88+ 3s-4+1=0,

and therefore r=0, s=0, =0, m=0. So for a sextic with three equal roots reduced
to the form (a, 4, ¢, 0,0, 0%z, )°. Supposing any term in one of its invariants to be
a’b’c’, we should have
67‘+5s+4t=§2"_’=s+2i, or 67 4s4+2t=0,

which is absurd, unless »=0, =0, =0, m=0, and so in general for a binary form of
any degree. If in the above example for the degree m only three roots were equal
inter se (the form assumed being (@, b, ¢, d, 0, 0, 0)2, %), any term in a supposed inva-
riant being @'6°¢’d“, where r+4s+¢+u=m, we should have

6r4-bs-+ 4t 4 Su=3m=s4-2¢t+3u,
and, as before, _

6r4-4s42t=0, r=0, s=0, {=0;
no longer, however, m=0, but m=wu, which is left undetermined.

(49) Before proceeding further it will be proper to consider under what circumstances
a variation (in the coeflicients of any equation) arbitrary, except that the coefficients are
to remain real, can affect the character of the roots.

Let F(2)=0 be any algebraical equation with real coeflicients, and let 3(Fz) be the
variation of F due to the variation of the coefficients, dF(z) the variation due to the
change of z into #+dz. If, now, r be a root of Fx=0, and r+-dr the corresponding
root of F(#)+40F(2)=0, we have

Fr=0, F(r4dr)+3Fr)=0, or d(r)+2 F(r)dr+_l-1-(2(%)2Fr(d¢)2+&c,=0.

Hence, unless éE:O, i. e. unless there are two equal roots », we shall have

dr
dr:—jj—-wr)—= a real quantity; so that the character of the root r4-dr will be the
=)
dr
same as that of 7.
But if dF—O &F_ i i—1F_0
—c_i_r-_l’ Z o \ar =Y,

so that there are ¢ roots 7, ¢ being any integer greater than zero, then to find dr we
have the equation

Thus dr will have ¢ distinct values; of these, if ¢ is odd, ‘all but one will be imaginary,
but if ¢ is even they will be all imaginary, or only all but two imaginary and the remain=-
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ing two real, according as the sign of 8F(r) is the same as or the contrary to that of

(%)2]?(7') Accordingly, if r is real () and ¢ even, the nature of the ensemble of the ¢

roots 74dr will not be the same when 8F(r) is positive as when 8F(r) is negative.

(50) So, further, if F#=0 have 2m equal roots 7, 2n equal roots s, and so on, the deduced
corresponding groups, of roots in F(2)+40F(2)=0 will, or may at least each of them,
undergo a change of character to the extent of one pair of the » group changing their
nature with the sign of 3F(r), one pair of the s group changing their nature with the
sign of 0F(s), and so on; but in no case, except F(x) possess some equal roots (. e.
unless its discriminant be zero), can an infinitesimal variation in the constants affect the
character of the roots(*). '

- (51) To every facultative point corresponds a certain set of values of J, D, L; and when
these are given, it has been shown that the equation (a, 8, ¢, d, e, f Y, y)° is reducible to
the form 7u’+-sv°+tw’, where u+v-+w=0, or to the form ru-sv;4¢w’, where

— w4 w —w—v

g U=
or to the form aw’4-5euv'+-fv*, w, v, w being always real linear functions of &, gy, with
the sole exception that when J=0, K=0, L=0, the reduced form is

o’ 4 5buv+10cu*

‘When these three invariants are not all zero, the coefficients in the reduced form r, s, ¢
or a, ¢, f are known functionsof J, D, L, and the character of the roots is perfectly deter-
minate; so that to every facultative point corresponds an infinite family of equations
with real linear coefficients all deducible from each other by real linear substitutions.
Thus then, with the sole exception of the origin, every facultative point corresponds to
a determinate character of equation, viz. to an equation with four, or two, or no imagi-
nary roots; so that by a bold figure of speech we may be permitted to speak of every
point but one in facultative space having a detelminate quality, as masculine, feminine,
or neuter. The origin alone is exempt from this law, and may be considered to be of
epicene gender, since the factor aw’+-5buv-+10v* may have its roots real or imaginary.
As we travel continuously from point to point in the facultative portion of space we
pass from family to family, or, if we please, from an individual of one family to an indi-
vidual of another family, differing from the former individual by an infinitesimal varia-
tion of the constants.

u,~4v,+w=0, and u,=

(*%) r, although supposed to be one of a group of equal roots, is not necessarily real, for it may belong to a
factor (2 2e cos §+¢7)%

(%) Compare this statement with the corresponding one given by M. Hrrmirr, Camb, and Dub. Journal, vol. ix,
p. 204, where only one parameter is supposed to undergo a change. I think that greater breadth and at the
same time greater precision and clearness are gained by the mode of exposition employed in the text above. It
will be observed that for a change of character to be possible when the function passes through a phase of equal
roots, it is not enough that there shall exist a group of equal roots r, but there must be an even number of
such roots in the group, and, furthermore, the equal roots must be »eal; when this last supposition is not
satisfied, no change in the character of dr will affect the character of r+dr: an instructive exemplification of
this remark will occur in the sequel.
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(52) If, then, we insulate any portion of facultative space, and in the block so insulated
it is possible to pass from one point to any other—that is to say, if we can draw a con-
tinuous curve of any sort from one point to another without passing out of the block, and
without cutting or touching the plane D=0, then by virtue of the principle just laid
down, we see that all the points in such block have the same character, and the nature
of the roots will be the same in the infinite number of families, each containing an
infinite number of individuals which the points in that block severally represent. Now
imagine a block taken so extensive as to admit of no further augmentation, except
accompanied with a violation of the condition of the capability of free communication
between point and point without cutting or touching the surface D; such a block may
be termed a region, and the whole of facultative space will be capable of subdivision
into a certain number of these regions. This being supposed effected, the character of
each region will be known when we know the character of a single point in it; that is
to say, every region will have a determinate character of positive, negative, or neuter.
It will presently be shown that the number of such regionsis only three(*") (the least
number it could be to meet the three cases of four, two, or no imaginary roots), one
masculine, one feminine, one neuter; and consequently there will be but three cases to
consider when the invariantive coordinates J, D, L are given; according as J, D, L
belong to one or the other of these three regions, the equation to which they belong
will have all its roots real, or only one real, or three real and two imaginary. The
origin, it need hardly be added, constitutes a region per se, in which, so to say, the
characters of masculine and feminine are blended.

(53) Let it be observed that we can see & prior: that, were it not for the distinction
between facultative and non-facultative portions of space, it would be impossible for
each point corresponding to a given system of invariants to possess an unequivocal
character; for in such case there would necessarily be free continuous communication
possible between all the points on each side of D énfer se, and consequently we should
be landed in the absurdity of conceiving the general equation of the fifth degree not
to admit of division into cases of four, two, or no imaginary roots; D being negative,
we know, would imply two roots, and not more than two, being imaginary; and accord-
ingly D positive would imply either that four roots are imaginary or none—not sometimes
one and sometimes the other, but in all cases alike four imaginary, to the exclusion of the
supposition of the roots being all real, or else of all the roots being real and never four
imaginary. Thus we see that the mere fact of a given system of invariants communi-
cating a definite character to the roots, implies the necessity of the invariants exercising
a restraining action over each other’s limits, and that where this restraint does not exist
it is impossible that the character of the roots can be determined by the values of the
invariants.

(*) It is clear from the definition, that a region can only be bounded by G the amphigenous surface, and D
the plane of the discriminant: and granted (as will be shown hereafter) that G and D fouch each other in only
one continuous line, it becomes obvious & prior: that there can be but two regions on one side of D and a single
region on the other. '
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(54) This is precisely what happens in biquadratic equations. In such we know the
fundamental invariants ¢, s, or, if we please, #, A (where A=s+427#), are perfectly inde-
pendent and subject to no equation of condition; so that if we consider ¢, A as the
coordinates of points in a plane, the whole of the plane will be made up of facultative
points. 'When A is negative, 4. e. for representative points lying on one side of the line
A, it is true we know that there is just one pair of imaginary roots constituting what
may be termed the neuter case; but when the representative points lie on the other side
of this plane, they cannot be said to be either masculine or feminine, but will every one
of them possess that epicene character which is peculiar to the origin alone in the case
of quintic forms. A single example will make this clear.

Take the two reduced forms

w4 6(14-¢)uv 04,
o'+ 6(1—¢)’- 0",

where u, v are real linear functions of 2, y, and w, § conjugate imaginary ones of the
same; and suppose s, the quadrinvariant in respect to &, 7, to be the same for both forms.
For greater convenience of computation consider ¢ to be infinitesimal.

Then in the one case the ¢ is of the same sign as

(148)(1—(14ep), i.e. —2s,
and in the other the ¢ is of the contrary sign to
(A—e)(I—(1—s)),ie. 2

so that ¢ is of the same sign (viz. negative) in each case.
Again, in the two cases respectively
2 4¢?
e I(ET
Hence ¢ as well as s, and consequently ¢ and A are alike for both forms.

But in the one first written the roots are of the same nature as those of u*46u%?® 0%,
1. e. are all impossible, and in the other of the same nature as in

<u—g xv>4+6<u—;m>2<ti—_;ﬁ)2+ (u—2w>4=0’

where u, v are real linear functions of #, y and i=+/ —1, in which case the roots are
all possible. Thus we see that the very same values of ¢, A may correspond either to
the case of four real or four imaginary roots, showing that the point #, A is what we
have termed epicene. If we choose to take s, ¢ as the coordinates, the same remarks
would apply, except that A instead of a straight line would become a semicubical para-
bola. All the points on one side of this curve would have a definite neuter character,
but those on the opposite side would be neither masculine nor feminine, but epicene.

(55) With a view to its subsequent distribution into regions, I now proceed to ascertain
the form of that moiety of space which I have termed facultative.
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Let J?>=¢K, J*=yL. Then
G_ly8._2 12 12,0, ana D=1-1%8,

SIS v —vq g B
We may for the moment make abstraction of the section of G made by the plane of L;
that being done, and J, K, L being referred to the form ru’-+sv*-¢w* or ruf+-sv} 4w,
calling '°, M, and, as before, using ¢, s, 7 to denote st, ¢r, rs, we have

+J =M(c’+6*+7°—2¢6— 207 —207),
K=M?%or(¢+o-+7),
+L M3e2 2 ‘Z
Now when G=0, we may suppose ¢=go, §=§=6+4, 0 being a new auxiliary variable.
‘We have then
F+J =M(s*—4er) =Mesd,
K=M’¢"+(2¢+7)=M?"+ (1+0+4)

....\_ —— 3,42 a— 3.3 1
and consequently

y ='—]I:3=94+4@3,
_ 2 Re+4) .

K 6+6

(56) In general we have 6*+46*—y=0. ,

By a well-known corollary to DEscARTES’S rule this equation can never have more
than two real roots; when » is positive there will always be two real roots of opposite
signs; but when v is negative and inferior to a certain negative limit, all the roots become
tmaginary. When v lies between zero and that limit, two roots of § will be real and
both negative. To find that limit we may make 44°4126°=0, or 6= —3, which gives
y=81—108=—27.

(57) When D=0, g=%{2—= 128, i. e. 6°4-46*—1280—T68=0, or (§48)*(§—12)=0;
so that the roots of §, when D=0, are —8, —8, 12, and the corresponding values of »
are 2", 21, 2127,

If now we make §*+46°=2", one of the real values of § we know is —8, and the
other will be the real root of the cubic equation §*—46°4-820—256=0.

When §=35, the left-hand side of the equation =125+4+160—100—256=—71. -
When §=06, the left-hand side of the equation =216-4192—144—256= 8.

Hence the real root lies between 5 and 6, and ¢ lies between 21_215 and -3%0 . Thus

¢< 30 and D_l—-—q« is negative.

Again, if we take §*-4-46°=27-2", and take out the root §=12, the resulting cubic

becomes
6*-+1662419204-2304=0,

where it will easily be seen the real root lies between —12 and —16.
MDCCCLXIY. 4q
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‘When §=—

26—‘"4 —_
g=0 ra=144x3=192;

and when §=—16,
g=256x {2=307%.

Moreover, when ¢ is a maximum or minimum, it will readily be found that
§+4110+24=0; so that f=—3, or §=—8. THence for the value of 4 found from the

above cubic g<192 and —ngz 1— lqﬁ is positive.

(58) When J=0, »=0; and when L=0, y=00.
For these two cases it will be more simple to dispense with the auxiliary variable 6, and
to revert to the original equation between J, K, L.

Accordingly, when J=0, we find 8LK*—432L°’=0. Hence

3 2 D — 2.
L=0, or K*=5412, i. e. (128) — 5412

so that the complete section of G made by the coordinate plane J becomes a straight
line, viz, the axis of D, and a semicubical parabola whose axis is the negative part of D.
When J is very nearly zero, » becomes a positive or negative infinitesimal in the equa-
tion §*4-44°=yv.

One real root of this equation is d= (i) .
The other is —4+3, where (4(—4)°+12(—4)*)3=y,

. =
or 0= 5i
K3 /6+6 6+6)
\j e
Now L2“<e+4) (O+4) =513
The first value of ¢ gives K*=>5417 to an infinitesimal prés; the other value gives
Kiem— 5—1~%L2
or, to an infinitesimal prés,
Dy sz,
(128)

so that D passes from oo to —c0, 7. e. passes through

zero.

(59) In the annexed figure(*), the plane of the paper repre- &
sents the plane of D, 4. e. the plane for which D=0; JOJ is
the axis of J, OJ being the positive and OJ the negative
direction ; LOL is the axis of L, OL being the positive and
OL the negative direction. In order to avoid any appearance
of an attempt at a practicably impossible accuracy of drawing, I use straight lines to

(**) 1 shall refer, when I have occasion to do 50, to this figure, which contains a synopsis of the whole theory,
under the name of the Dial figure.



AND IMAGINARY ROOTS OF EQUATIONS. 637

denote cubical parabolas, and pay no attention whatever to relative magnitudes, but only
to the order or progression of magnitudes, using the lines which are drawn in the figure
not as copies but as symbols of the actual curves which are to be mentally imagined.

Thus the line JOJ is used to represent the straight line L=0; A'OA' the cubical
parabola J*=27-2"L; AOA the cubical parabola J*=2"L; IIOII the cubical parabola
JP=—2TL(").

It will be observed that certain combinations of plus, zero, minus, positive and nega-
tive infinity are placed along the lines and inside the sectorial spaces. The meaning of
these will be sufficiently obvious from what has preceded. They refer to the signs of
the two values of D in the surface G for each point in the line or sector along or within

which they are placed. At every point along the line 07,2

RE
positive; along A'OA/, % has two values, one positive and the other zero. Along AOA,

has only one value, and that

?g has two values, one positive the other negative. Immediately below LOL two values,

one -+ oo, the other finite and negative. Immediately above LOL two values, one — oo,
the other finite and negative. Along ITOII one value, finite and negative.

Moreover D has been shown to be never zero, except along A'OA’, AOA. Hence it is
obvious that inside A'OJ and the opposite sector D has two values, both plus; inside the
next pairs of opposite sectors two values, one plus, the other minus; inside the next
pair of sectors also two values, one plus, the other minus; inside the next pair of sectors
two values both miénus, and in the pair of sectors left vacant, for which »< —27, it
has been shown that D becomes impossible.

(**) Tt has been shown in the preceding articles that corresponding to the line JOJ and to the line IO,
the vertical ordinate D of the amphigenous surface (G=0) has only one value positive for the former, negative.
for the latter ; along the line A'OA’ two values, one positive the other negative; for the space between AOA/,
TOL indefinitely near to the latter two values, one positively infinite, the other negative; and for the space

indefinitely near to the same on the opposite of it, two values, one negatively infinite, the other negative. - These
results are collected and represented symbolically in the Table annexed.

J Al A L o
———
+ 0 Fo) -
.I. —
0 — — (—®)
Thus, corresponding to the upper sheet of &, we have the succession
+ 0 (+ ) - —
and to the lower sheet ,
+ 0 - - (= ) -

the two sheets coming together at a cuspidal edge above JOJ and below TOIL

Moreover these are the only positions of the line revolving in the plane of D corresponding to which a change
in the nature of D can take place, and thus we can without further examination fill up the Table, giving the
nature of D for the intervening spaces, and may thus obtain the Table embodied in the dial-figure above, viz.,

J A A L i
+ + + 0 + (+w) — -

+ —_—
+ 0 - - - - (=) -

492
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(60) Thus it will be seen that the surface G consists of two opposite portions precisely
similar and symmetrical in respect to the axis of D.

Let us trace that one of these whose ground-plan is comprised within the sector ITOJ.
It will consist of two sheets coming to a cuspidal edge (a common parabola) in the
superior part of the plane of L. The upper sheet will touch the plane of D in OA (*),
and, remaining above the plane of D, approach continually to the plane of J as an
asymptotic plane. The lower sheet will cut the plane of D in OA’, pass under the’
plane of D, cut the plane of J, progress to a maximum distance from it, and then
approach indefinitely to J as its asymptotic plane. This will become apparent by
taking a vertical section of this portion, cutting the lines OI, OJ; for the nature
of the flow of the two branches of the section will evidently be as figured below,
where j, A, 2!, I, = represent the points in which the lines OF, OA/, OA, OL, OII are cut
by the secant plane. [It should be particularly
noticed that this figure is only intended to exhibit,
under its most general aspect, the nature of the
flow of the two branches of the curve; it is drawn
in other respects almost at random, and makes

no pretension whatever to giving a representation .
of the actual form of the curve.] : : %

No part of the surface G lies under or above the N
sector TIOJ, except the axis of D. The cusp C,

where the two branches meet, is the intersection of
the cutting plane with the parabola J=D?lying in
the plane of L, and there will be another cusp at ¢,
the point of maximum recession from the plane of J.

(61) I now proceed to discriminate, by aid of
this surface, the facultative from the non-facul-
tative portion of space.

If in the expression for G as a function of J, K, L we substitute for K its value

D, ) I e e : . . .
- 1—2§-—l—1 5> Ve obtain G= {28y D*+ terms involving only lower powers of D; so that,

calling D,, D, the two real values of D in the upper and lower sheets of G respectively
corresponding to any point J, L,

G=J(D-D,)(D-D,)Q,
Q being a quantity essentially positive.

Hence when J is negative the facultative pomts in any line parallel to D will be
those for which D lies between D,, D,, but when J is positive, the facultative points
must be exterior to the segment D,D,; I denote this difference in the figure by placing
a colon between the signs in each sector for which J is positive, indicating thereby that
the facultative points lie between 40 and D,, and between D, and —co; but where no

(*) For the value of D for this sheet is zero all along OA, and positive on either side of it,
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colon is interposed, then it is to be understood that the facultative points lie between D,
and D,. Thus, if we turn back for a moment to the section of G last drawn, the whole
of the space included between the two branches and the asymptote is facultative, because
~up to the asymptote J is negative, and beyond the asymptote the whole of the space
not included between the asymptote and the lower branch is facultative, because beyond
the asymptote J becomes positive. Thus, then, we see that the whole of that portion of
the plane which lies on the left-hand side of the entire curve is facultative, and the
portion on the right-hand side of the same non-facultative; the curve separating facul-
tative from non-facultative space as a coast-line, indefinitely extended, separates land
from water; so that there is, as of course we might have anticipated, no break of conti-
nuity in passing through the plane J.

If we take a corresponding section of the opposite portion of space corresponding to
the ground-plan JLII, it is obvious that precisely the contrary takes place, because the
sign of J is opposite in the opposite sectors; so that what was facultative becomes non-
facultative, and wvice versd.

(62) It is now clear that the whole of the facultative part of space is divided into
three, and only three of the regions previously defined. One region will consist of that
portion of it which is entirely under the plane of D: the second region will be so much
of the upper portion as stands upon the acute sector JOA ; and the third of so much of
the remainder of this portion as stands on the sector AOJJOII(*). Again, as regards
the second region, the line OA' is quite inoperative against its unity, because we have
vertical ordinates above OA' through which free communication can take place between
the blocks over JOA' and A'OA ; but when we come to OA, where G touches the plane
of D, there we have an effective line of demarcation between the adjoining blocks above
the plane of D; for it is impossible to pass from one into the other without going under
D and coming up again through that plane, or else descending to the line OA and so
meeting the plane of D (*).

(*") It will be borne in mind that the whole of the infinite prism, both above and below, standing on IIOJ
belongs to facultative space: the prism standing on the opposite section JOII, or, to speak more strictly, on the.
inside of this last-named sector, is wholly unfacultative. The facultative line D which passes through O is com-
pletely isolated from the facultative portion which stands over AOJ, except at the point O (which we are for-
bidden to pass through if we would remain in the same region), and is of course a rectilinear edge to the facul-
tative prism above referred to.

(*®) Two superior regions we know ¢ preori must exist to correspond respectively to the two cases of five and
of one real root. Moreover we know & priori that two regions can only meet on the plane of D, and an inspec-
tion of the dial-figure shows that only OA can be such line. Thus without completely making out the geometry
of tho question as regards the remarkable line (J =0, L=0) (the axis of D) which lies on the surface G, we may
feel assured that the upper part of this line (which is easily found to belong to the 1-real-root region) cannot
have any point except the origin in common with the 5-real-roots region, since otherwise these two regions
would communicate along this line and merge into one. When it is considered that G is a surface of the ninth
order in J, D, L, it will not appear surprising that some difficulty arises in forming a mental conception of cer-
tain of its local properties; on the contrary, the subject of wonder rather is that enough can be ascertained about
it in a very brief compass to shed all the needful light upon the analytical problem which it illustrates.
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(63) It remains only to fix the characters of the several regions; but this requires
no calculation to effect, for we know that when D is negative there is one and only one
pair of imaginary roots. This disposes of the first of the regions above enumerated.
Again, we know that when L is positive so that the reduced form is the superlinear
equation 7w’ +-sv°+4tw*=0, u, v, w being real functions, D being also positive, there
must be four imaginary roots, as follows from the theory of the second section. Hence
the third region has for its character two pairs of imaginary roots; and consequently
the only remaining region, the second described, must correspond to the case of no
imaginary roots, since otherwise we should be absurdly assuming the impossibility in
any case of a quintic equation having all its roots real.

(64) It may, however, be an additional satisfaction to see how the change of character
comes to pass at the critical line OA from one to five real roots.

Along the line OA we have found that, calling the reduced form 7w} 4-sv? -tw?,

r=s -;:=—=£=3+4= —4.

Hence the equation becomes
4} 449} 4 (w,+v,)’ =0,

—u+w  —u—i
2’ 2

u, v, being of the form ®, because L is negative.

Hence v,~4-v,=0, or
A — o, Fui] —up}+o}) -+ (v, +0) =0,
i e. bui++10wv}4vi=0,
i e (u]4+01)=0;

so that there are two pairs of equal roots of ]

. (73
v‘, viz.=4; to these values of 51 correspond
1 1

u—iv U— v
u+m_" U+

-4

Hence
(I=su=(—1)v, or (14+)u=(>+1);

so that the two pairs of equal roots of Z—; are 11, the outstanding root corresponding to
u,4+v,=0 being %:0.

Now, still keeping upon the surface G, which we know is facultative, let ¢ become
— 8+44¢, where ¢ is an infinitesimal, then

3(T) =t=(40 4+ 120p0= — 5120
also the supposed equation becomes
(d—4e)(w] )+ (v, +v ) =0,
(w—u)’—(w-+u)*+8(1+4e)u'=0;
(lo—1)—(sg4+1)°+8(14¢)=0.

or

or, calling §=g,
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Let =140, where ¢ is an infinitesimal. Hence
(—10(ds—1)+10(Zs4-1))s*—8e=0,
or
20(1—10+5)r* —8e=0,
1 J3
*=15="35105" (L)

Hence calling o), 5, the two values of s, the four roots that at OA were 1, I, —1, —1

or

3
become 144, 14-6,, —140,, —1-40, when % becomes varied by B(Jl—?), and conse-

3 3
quently become all real if Jr is increased, and all imaginary if J— is decreased, i. e. be-

come real or imaginary according as the line OA sways towards or a,wa,y from OJ, con-
formably with what has been shown on other grounds.

It will be noticed that in the line OA produced in the opposite direction, 4. ¢. along
the line OA, L being positive, the reduced form is

(v 4v")+ (u +v)5:
and the roots of % become :—f— _+1, v_ =-1+; so that, according to the canon laid

down at the commencement of this discussion (see foot-note (*¢)), no change in the cha-

racter of the roots can possibly take place along OA, and accordingly we have seen that

this curved line does not correspond to any demarcation of regions.

(65) It is easy to express the conditions to be satisfied by the coordinates of a point
according as it lies in one or another of the three regions which have now been mapped
out, and it is clear that we have the following rule:

‘When D is negative the equation has two imaginary roots.

‘When D is positive the equation has %o imaginary roots, provided the two criteria J and
2"L—J* are both negative(*); but if either of these is zero or positive, there are two
pairs of imaginary roots(*).

The duodecimal ecriterion-invariant, 29T,—J?, and the invariants of the like order,
27-2L—J3, —27L—J? T shall henceforth call A, A',II respectively. It has been just
above shown that the three invariants J, D, A of the 4th, 8th, and 12th orders re-
spectively are sufficient for ascertaining the character of the roots of the quintic to
which they appertain.

‘T3 3
(*®) Observe that this implies L also being negative; so that 2“—-% is positive and EII-'-<2“.

(*) (%) Observe that in general when 2"'L—J is zero there are no facultative points above the plane of D, but

when J and 2"L—J, and consequently L and J are both simultaneously zero, a facultative right line springs
into existence, viz. the axis of D extending both above and below the plane of D. The reduced form of equa-
tion (as previously demonstrated) corresponding to this singular line is u®+uv*=0.
(") It may further be noticed that on each side of the line OA the limits of D are between positive infinity
and a positive quantity, and between negative infinity and a negative quantity ; so that as we pass from OA to
either side of it no facultative point can be found lying in the plane of D, showing that we cannot pass by a
real infinitesimal variation of doefficients from an equation with two pairs of equal imaginary roots to an equa-
tion with a single pair of equal roots, as is apparent also on purely analytical grounds.
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(66) The assertion that the whole of facultative space is divisible into three regions, in
strictness requires a slight modification. It is obvious that the plane of D itself cannot
be said to belong to any of the regions; and in order to make our theory quite complete,
so as to furnish criteria applicable to equations having equal roots, and to enable us to
distinguish between the case of the unequal roots being all three real, or two imaginary
and one real, we must examine what takes place in this plane, and under what circum-
stances a passage from one point of it to another will or may be accompanied with a
change of character in the roots.

If the roots of f(2)=0 are supposed to be @, @, ¢, d, ¢, where ¢, d, ¢ are unequal,
on varying the constants of f& in such a manner that the variation of the discrimi-

nant D is zero, the two equal roots @, ¢ will remain equal. Now én general we have
2

of(a)+f"(a) (j—g—)—=0; if this, under the particular supposition made, continued to obtain,

da would have two distinct values, and the two equal roots would cease to continue to

be equal, contrary to hypothesis. Hence we see that D=0, 8D=0 necessarily implies

0f(@)=0(%), and consequently 3f{¢+da) is no longer 8f@, but 8f'ada; so that we obtain

29 : .
da=0, or da= -—-./T,j,p,;a, and no change of character in the five roots results. If, however,

the original roots are @, @, ¢, ¢, ¢, then, as shown in the general case, d¢ will have two
distinet values, which will be both real or both imaginary. Accordingly we see that in

(*)(*) Thisis a somewhat curious theorsm (whether new or otherwise I know not) thus incidentally established
in the text, viz. that if D(f) represent the discriminant of £, and if D(f)=0 and 8D(f)=0, then when f=0 we
must have 0(f)=0. The very simplest example that can be chosen will serve to illustrate this proposition. Let

’ J=ax®+ 2bay ey’

Suppose

D(f)=ac—0"=0,
and also

OD(f)=adc+c8a—2b30=0,
we have

O(f)=a0a+ 2aydb + 1.
Now if f=0 we may write #=0, y=—aq, and of becomes
b0 — 2absb+ a*dc
=b%0a—2abdb + 2abdb —acda
=(0*—ac)da=0,
according to the theorem.
If we make f=(, 1), D we know becomes a syzygetic function of f and f' (me&ning by the latter %) Hence

since 8D vanishes when f»=0, D=0, and df(x)=0, we learn that §(D) is a syzygetic function of (f, ", 8f).

The theorem thus stated easily admits of extension to the higher variations of D, and so extended takes I

believe the following form : ‘
¢i(D)= a syzygetic function of (£, f!, £/, .... 7%, of).

(*) Professor CAvzEY has since informed me that the theorem in (%) (%), about whose originality I was in doubt,
will be found in Scrrirrr’s < De Eliminatione.! This is not the first unconscious plagiarism I have been guilty of
towards this eminent man, whose friendship I am proud to claim. A much more glaring case occurs in a note
by me in the ‘ Comptes Rendus,’ on the twenty-seven straight lines of cubic surfaces, where I believe I have
followed (like one walking in his sleep), down to the very nomenclature and notation, the substance of a por-

tion of a paper inserted by ScrrirLr in the ¢ Mathematical Journal,’ which bears my name as one of the editors
upon its face !
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the plane of D no change can possibly take place except in crossing the line which
corresponds to a family of #wo pairs of equal roots.

(67) It has already been pointed out, in a foot-note, that we cannot pass facultatively
from OA to either side of this curve line. Hence the separation of the plane of D into
subregions can only take place along the line OA, and it remains but to ascertain the
character of the points on either side of this line, which we know, therefore, & priori,
must possess opposite characters, since otherwise we should be admitting the absurd
proposition of its being impossible to construct an equation of the fifth degree having
two equal roots without the remaining three being always of one character, either all
real or all not real. Let us, then, ascertain the character of the points in OJ for which
D=0, L=0, and J is positive(*).

Since L=0, the reduced form is u®-beuv*42°.

This equation, by DESCARTES'S rule, must contain imaginary roots. Hence in the sector
AOJ the roots are all real, and in the remainder of the facultative portion of the plane
(from which it may be noticed the sector AOJ is excluded) two of the roots are imagi--
nary.

Along OA itself there are, as already observed, two pairs of real equal roots, and
along OA two pairs of imaginary equal roots. Thus, finally, we have the complete rule.

If D is negative, 2 roots imaginary.

If D is positive.

‘When J, A are both negative, 0 roots imaginary.
» J, A are not both negative, 4 roots imaginary.
If D is zero.
‘When J, A are both negative, 0 roots imaginary
» J, A arenot both negative, 2 roots imaginary
» J is negative, A zero, 0 roots imaginary
» J is positive, A zero, 4 roots imaginary
,, Jis zero, A zero, 3 equal roots(*6*).

}1 pair of equal roots.

}2 pairs of equal roots.

Thus we see that our space referred to an arbitrary origin, and with the invariants
J, D, A for the coordinates, has been first divided into facultative and non-facultative
space. The former has then been resolved prismatically into two regions above and one
below the plane of D. The plane of D itself, or the facultative part of it, into two

(**) We could not take J negative, for the facultative points of D in J arg two positive quantities. See dial
figure.

(*¥%) When D=0, A=0, there are two pairs of equal roots. IfJ is negative these pairs are both real. If
J is positive they are both imaginary. When J is zero there are no longer two pairs, but a single triad of equal
roots. This perfectly explains what at first sight has the air of a paradox, viz. that the discrimination between
the two kinds of double equality of an apparently equal order of generality that may subsist between the roots
of an equation, depends on the fulfilment or failure of an algebraical equality. The fact is, as shown above,
that there are not, as commonly supposed, two, but three kinds of double equality, according as there are two
pairs of real, two pairs of imaginary, or one triad of equal roots; and the last is a sort of transition case between
the other two.

MDCCCLXIY. 4R
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planar regions on opposite sides of the line AOA; and again this line into two linear
regions on either side of the origin O, which last corresponds to the case of three equal
roots, and constitutes a region or microcosm in itself.

(68) It may as well be noticed here that the ambiguity of character in the points
representing the different families of biquadratic forms when ¢ and D are taken as the
coordinates (and the same would be true if s and D were employed), which prevails
when these points lie above the line D=0, equally obtains along this line itself. For
the reduced form, when D=0, is aa*+4b2°y+6c2’* In that case, calling the deter-
minant of transformation w, we have s=3w'*¢’, D=—p¢*; and thus, whatever s and
D may be, the character of the unequal roots is left undecided.

It may also be noticed that the blending of characters at the origin for the quintic
form is not precisely of the same nature as that for the points above the line D in
the biquadratic form; for at these points it is the cases of 4 and 0 imaginaries which
become undistinguishable invariantively; whereas at the origin for quintics the re-
duced form becomes ax’+-5ba'y+102%7, and the characters left undistinguished are
those of 4 and of 2 imaginary roots—unless, indeed, we consider equal real roots as
belonging indifferently to the class of real and imaginary; on which supposition all the
three genders (so to say), masculine, feminine, and neuter, become blended together at:
that point. But if we consider equal real roots as exclusively of the real class, then the
origin for quartics ceases to be epicene; for when there are three equal roots all of them
must be real. Thus the origin in quintics is the only epicene point, and in quartics
the only non-epicene point—understanding by epicene the blending of the masculine
(4 imaginary roots) and feminine (no émaginary roots) characters.

(69) We may draw some further important inferences from an inspection of the
“ dial figure,” or the section of facultative space which follows it.

Within the prism JOA' (*) it will be observed D is always positive (*). Hence, when
J is negative and A’ is negative, all the roots must be real, and the necessity for using
the criterion D is done away with.

- Again, when J and L are both negative, D is always negative, so that just two of the roots
must be imaginary ; and in this case also it becomes unnecessary to apply the criterion D.

Again, since there is no facultative prism corresponding to IIOJ, the combination
of L and D, both negative, can never occur unless II is negative.

When L is negative, but J not negative, there may be two or four imaginary roots,
according to the sign of D ;" but all the roots cannot be real.

(70) M. HermiTE's rule is as follows. For remarks on the relation between his A,
J,, J; and the J, K, L of this paper, see foot-note (**). D is still the discriminant.

If D is negative (of course) two roots are imaginary.

If D is positive.

() By which I mean within the facultative prism of which JOA' is the section made by the plane of D.

(*%) The vertical section of facultative space in this supposition (see figure) is the area ACA!, which lies wholly
above the plane of D.
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When A is negative, 25 A®— 3.2'°J, negative and J, positive, no roots are imaginary.
Aisnegative, 25 A°—3.2"J, positive, 26 A*—2"J, negative, no roots are imaginary.

Aispositive, . . . . . . . . fourrootsareimaginary.
Ajis negative, 26 A°—3. 9“’J pos1t1ve, 25A“’ ~9nJ, positive, four roots are imagi-
nary(®).

(71) What is the effect of the condition “ A positive or negative,” as the case may
be? or rather, how does this condition arise? The ground of it is simply this, that A=0
represents a cylindrical surface passing through the curve OA (see dial figure), which
curve is the edge of separation between two regions of opposite characters above the
plane of D; the cylinder in question cuts the facultative position of space below the
plane of D, but above this plane (except along the vertical line J=0, L=0, q. e. the
axis of D) it passes exclusively through non-facultative space, never again cutting or
meeting the surface G (the facultative boundary). Now it is clear that any surface
whatever which passes through OA and never meets the surface G above the plane
D=0, except along the axis of D (i. e. the line J=0, L=0), may be substituted for
A(*) and will serve equally well with A to distinguish between the masculine and femi-
nine regions of space. A —pJD will fulfil the condition of passing through the line OA,

(®) (*) The last four conditions ought to,tally (and be in effect coextensive) with the two given by me for
the case of D positive. The third of them, viz. the case of D positive A positive, I have already noticed, as
inferences from the dial figure; for M. Hrrmite’s A, if not identical with my J, is at all events a positive mul-
tiple of it. I do not see how the case of A negative, 25A%—8.2J negative with D positive, is met by this
system of criteria, since J;, as well as A, may be negative consistently with the second condition. I have not
been able to ascertain whether in the memoir such a combination is shown to be impossible, M.HzrmIiTE
admits, and indeed bas been always aware of, the existence of a lacuna in the conditions above stated, which, I
understand from him, it is his intention at some future time to fill up, and thus to complete his original solution.
In the meanwhile he has been led to study the question from a different point of view, and has succeeded in
obtaining a new set of criteria adequate to a complete solution of the question without calling in the aid of the
principle of continuity. In this new system my A criterion is replaced by an invariant of the twenty-fourth
degree, which is of course an objection as far as it goes, but in no wise diminishes the extraordinary interest
that attaches to this altered mode of approaching the question, which bears to his original method and my own
the same relation as the proof of Srurm’s theorem by the law of mertla for quadratic forms bears to that given
by Srurm himself.

(*) It is apparent from the fact that when D=0, G (M. Hrrarre’s I?) becomes (25A°—3.2°7,)(25A3—2117,
(Camb. and Dub. Journal, vol. ix. p. 206), that the factors of this product are respectively of the form aA'+8JD,
¢A+eJD, a, b, ¢, ¢ being certain numerical quantities. This gives rise to a singular reflection, o wiz, that my
own criteria for the case of D positive may be varied by the addition of a term ADJ to A (A being a numerical
coefficient), provided A lies within certain limits, the form of the criteria in all other respects remaining un-
changed. This proposition, fraught WiEh the most important consequences, and not unlikely to lead to an
entire revolution in the mode of attacking the general problem of criteria, I proceed to establish in the text.

* (") The surface to be employed will be A —gJD, which call M. A and M (or at least their upper portions above
the plane of D) may then be regarded as the two sides of a sack, of infinite dimensions, open at the top, and
seamed together at the bottom, along the curved line D=0, A=0, and in the vertical direction along the
straight line J=0, L=0. The surface A serving as a screen of separation between the two upper regions, it is
clear that M will serve equally well as such screen, provided no superior facultative points lie in the interior
of the sack,

4Rr2
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whose equation is A=0, D=0, and obviously is the only invariant not exceeding the
twelfth order capable of so doing; it only remains to ascertain within what limits the
numerical coefficient ¢ must be taken so as to fulfil the condition that the combined equa-
tions A—gJ D=0, G=0 shall be incapable of being satisfied by any positive value of D.
(72) Substituting for A and D their values, the equation to be combined with G=0

becomes
JP—=2"L4pJ (J2 - 128K)=0.

Returning to the notation of art. (65), and dividing by JXK, this equation, when G=0,
becomes
q >8) =
g—2",+(q—128)=0,
or
(A4e)gr—2"¢g=128e,
which, substituting for ¢, » in terms of 4, gives

1 40 +4)2 93 4- 462
S | )

or

(6+4)6%(6 4 8)((6°— 46>+ 820 —256) 4 (6°— 46— 960)¢) =0

When §48=0, D=0, see art. (57); neglecting, then, this factor, the condition to be

satisfied is that when from the equation

(04-4)6°((6°— 462+ 826—256 )+ (6°— 46°— 966)) =0
a value of § has been deduced, the values of D corresponding thereto shall not be a
positive finite quantity.

(73) Now

D_,_ 128(0+6) _P+46—128(8+6) (6+8)%¢0—19)
J2 020+4) — 020 +4) — P0+4)

If =0, or 4+4=0, since D cannot be infinite, we have J =0, so that A—gJD be-
comes identical with the original criterion A. Hence the factor (6--4)8°in the quantity
just above equated to zero may be neglected, and the condition to be fulfilled by ¢ is that
if § be any root of the equation

— 034 462—320+256__
Poap—968 9
‘6 shall be between —4 and 12; this equation on making §=—4¢, so that 1>¢> —3,
becomes

_PeP+244
- ST Prei—6e
or, writing 6=-——>
26 +1 2p+1

= —6p (p—2)plp+3)

(74) We wish to ascertain what values of & will be incompatible with the violation of
the limits just assigned to ¢, and accordingly we must inquire what is the range of values
assumed by ¢ when ¢>1 or @< —8; any values of ¢ 7ot included within this range will
be admissible for the purpose in view.
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When p< —38, ¢ is always positive, and proceeds continuously from o to 0 as ¢ passes
from —38—¢ (¢ being infinitesimal) to — o. Consequently ¢ must not be allowed to

have any positive value. When ¢ = o, 6=0, and when p=1, 6=—32.
Hence, if no minimum value of ¢ (i. e. no maximum value of —o¢) occurs between
¢=1, p=c0, ¢ may have any value between 0 and —2; but if such a minimum value,

—M, where M > £, should exist, the admissible values of ¢ would become more enlarged,
and might be taken between 0 and —M.

Making then ds=0, we have
2  30°+2—6
20+17 ¢°+¢*—6p’

4¢°+5¢°+20—6=0;
which, substituting 14+ for ¢, becomes

4P+ 174+ 244 +5=0;
so that there can be no real root of the equation in ¢ greater than unity.
Hence the admissible values of ¢ are defined by the inequalities 0 >0> —2,
. 1 ‘
e 0>—"F8s_2  or 0>—(l4¢)>—3  or 2>¢>—L
(75) We have thus obtained the complete solution of the problem of assigning inva-
riantive criteria, such that their signs (positive, negative, or zero) shall serve to fix the
nature of the roots. These criteria we now see are

J, D, A+4pJD,
where p (the negative, it must be noticed, of ¢) is any numerical quantity intermediate
between 1 and —2 (*).
(76) This important modification of the original criteria J, D, A I proceed to apply

to the problem of obtaining the simplest and most symmetrical expression for the criteria
in terms of the roots of the equationf Let a, b, ¢, d, ¢ be the roots, and write

Z=3{(a—0)(a—c(b—c(a—d)(ame) (=) (b—c}(o—d)(ome)*,
7=3{a, 8, (", )}

) Strictly it has only been proved that the surface A+ pJD, which passes through the line A, D, contains
no superior facultative points except those comprised in the line L=0, J=0. It is, I think, not difficult to see
from this, that, if in the “sack” formed between A and A+pJD any such points were contained, L=0, J=0,

i. e. the axis of D would be a double or multiple line on the surface G, which is easily disproved by examining
2

the algebralca,l form of G in art. 41, where K represents i) z—é-.]' ; any obscurity, however, which may be sup-

or

or say

posed to cling to this view is immaterial, as a demonstration capable of being followed in plano and leaving
nothing to be desired in point of perspicuity, will be found in the Note appended to this Part.

(*®) Agreeable to the meaning assigned to § and to a couple of rows of letters in my memoir on Syzygetic Re~
lations, in the Philosophical Transactions,
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Then, since each letter occurs the same number of times (12) in each term, Z will be an
invariant.
(77) Again, suppose any two roots to become equal, say that ¢ becomes d, then Z

reduces to the single term Z (a, &, ¢) (g Z 0); for any such factor as {(a, b, d) will be

accompanied with the factor (Z Z d) which vanishes.

If, further, we suppose any two of the letters @, b, ¢ to become equal, then Z disap-
pears entirely, since on that supposition {(, 0, ¢) vanishes. Hence Z is an invariant of
the twelfth order, possessing the property of vanishing when the equation to which it
belongs has two pairs of equal roots. Ience Z is of the form pA-+¢JD, and it be-

comes of importance to ascertain the value of the ratio %

To do this let us suppose ¢=0, a=—8, c=—d.
The ten terms in Z correspond to the following ten partitions:—

@ @) 3) (€]
abe : abd acd - bed
de ce ' be ae
©) (6)
abe cde
cd ab
)] ) ©) (10)
ace bde ade bee
bd ac be ad

(78) The corresponding values of the terms will be
40} (a®—c*)%. 16(a*c*)8(a*—c*)'; 4a*(a*— 0?1160’ (a?— ¢*)*; 402(6&2—62)2.16a202(a2-¥02)4 ;
4 (a?—*)160%c*(a*—c*)'; 4a°ci(@®— ) 4% (a*— ) ; (a—c)*256a'c (a+tc);
a’c(a—c)256a’c'. a'c(a-+tc)’; (a+c)256a'c(a—c)*; (a+c)256a'c (a—c)
Collecting and simplifying these terms, and observing that | ‘
(a— (a0 + (a0 (a—c)=(a—e")(a-+ o+ (amcf) =4(a—c')(a*+-14a ),
we find ’ ‘
7.=128(a’+c*)a’c(@*— ¢*)° +4(a* + ¢*)a’(a*—*)°
- +1024(a’+*) (@t +14aPP ¢t )(a* —¢*) eV,
v i
Z,=16384pg*+1024p°*g*+128p%g -+ 4p*
=214pg* 202+ 27pg 4+ 2,

Let (¢’ —¢*)’=p, a’c®=¢, and let Z,= Then
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(79) We must now calculate J, D, L:

D=§3§(a, —a, ¢, —¢, 0)

1 ;
=§4a666(a’—- Ay

or writing
D
D=§g9
4
D =53 _ps.v

Again, for J. The form to which it belongs is
xs_(a2+02)xsy2+azc2xy4’

or
2+ 2 2,2

(15 Oa—l—l‘l‘bﬁ‘s O, %c—‘, OI$, 9)5;
so that the coefficients of the biquadratic Emanant are

z; —
Hence the quadratic covariant becomes

‘igc_e 2+ _?__( 2 2\ 22,2 __?___ 2 02 212

5 &+ g5 (@’ )y +100(a +c*) e’

__20a%*+3(a®+*)*?

2
= 100 2+ 5x(a*+ )@’y
Hence, by definition, J (which = —4 X Discriminant of the Quadratic Covariant)

= — 155 (@) @+) (3@ ="+ 820°¢) ;

and making
~ J
Jl= (ag+ cg)g H

j=_6 64 6 2
=625 ges 4=~ 5P — 5

Finally, to calculate L. The canonizant of the form

1 0 A 0
0 A 0 B
A 0 B 0

¥ —ays &y =
(A>—AB)2*+(B'— AB)ay?,

of which the discriminant is

is

AB?
— 4_27 (A*—B),

@+c® a4 d? . a%?
109 —T10% FY 5

649
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where

A=+ g2
—" 10 — 5
Hence, by definition,
L= ABY(A = B)f = — 5 003+ 5) (@) (= 02y — 1677 ;

and making
L

=T @A

L

1 1
L= 135 10(»—169)'= — 5w5(»"—16g)".

(80) Now let us write

srZ=rLAeTD(®) 4T

“This gives
1
sely=eqJ D+ p+49)Ji 4L,

or

4p*+128¢°p*+1024¢°p*+16384p¢®
1
=125(256p°¢*+24p°q)e+( p+4)(6p~+-64¢)e+5:( p—16g)"n),

by means of which identity we can obtain linear equations for finding the values of ¢, ¢, ».
Thus, equating the coefficients of p*, ¢*, p°q respectively,' we obtain

4=216c+557,

4
4, 6435+—1§67 7=0,

which gives 7=—2"¢ (as it ought to do),
- 128=(24 % 125)e4(4 X 216108 X 64)e64 21
=3000e-4-8800:.
Hence
1 10
2005:4, . £=—5-6, n:—%a
30000=128—176=—48, 6=— oz and S=—1
¢=128—176=—18, e=—qp and \=—7%
In order to verify the value of e, let p—=—4, ¢g=1; then, assuming the correctness of

the above determinations, we ought to find
4°—128.4°4-1024.164-16384=125(256.16—24.64

or

—2 1 1 l
2L 160000, —2m
200(1— 8416 —64)=(~32.256 +48. 64)— = x 160000,

or
21°(=55)=—5120—25.2048=2"(—5—50),
which is right. ,

(") Since Z has been proved to be of the form pA+¢JD, we know & priori the value of £; but I have
”

thought it safer to determine ¢, y independently, as an additional check upon the accuracy of the computations.
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(81) Thus
510 4
~7=% (2"L—74£1D)

=§2’3<A+‘;JD) ;

and accordingly we have proved that —Z is of the form (A+%JD); and consequently,
since ¢ lies within the allowed limits 1 and —2, —Z may be used to replace A in the
. system of criteria. |

(82) On examining the composition of Z, it will be found to have a remarkable relation
to the lower criterion J.

J we know is, to a numerical factor prés, of the form

2{(61—3)4;(“, b, 0)}9

¢ denoting, as usual, the squared product of the differences of the quantities which it
aﬁ‘ects; and Z, it will readily be seen, is of the form

2 1
(8@ 8 o, @, ) 2 g g

and the squared factor is always positive whatever the roots may be, for & is always real.
Hence the essential part of our rule thus transformed comes to this, that if

© 3(¥(a, b ) x (d—e)") and 3{(¥(a, b, ¢)) (@~ o)}

are both of them positive, then when the discriminant is positive, so that the case of two
of the five quantities @, b, ¢, d, ¢ being conjugate and the other three real is excluded,
and the choice lies between supposing all or only one of them real, we are able to affirm
that they will all be real. Nothing could be easier than to multiply tests expressed by
simple symmetric functions of differences of the roots, any infringement of which would
contradict the hypothesis of all the five letters denoting real quantities; the difficulty
consists in discovering a system of the least number that will suffice of decisive tests,
such that not only their infringement shall contradict the hypothesis of imaginary roots,
but whose fulfilment shall ensure the roots being all real. This is what has been proved
to be effected by means of the invariants J, D, A4£JD. ‘

In the case before us it is clear that when the roots are all real, each of the sums
above written must be positive and greater than zero. That their being both positive and
greater than zero is inconsistent with four of the letters a, b, ¢, d, e being imaginary
would probably not admit of an easy direct demonstration. ”

Z we have seen is only a particular value of the general invariant A+ pJD, which
may be called M, where w is an arbitrary constant limited to lie between 1 and —2.

(83) It may be well to notice the effect of using as @ criterion, in conjunction with
J and D, the value of M corresponding to either extreme value of w. In such case,
supposing M to become zero, it might for a moment appear doubtful to which region

MDCCOLXIV. 4s
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that point representing the family of forms is to be referred. But since the doubt can
only arise when J is negative and D positive, and since by hypothesis we have A=—uJD,
we see that A takes the sign of w; and consequently the sign of M, when it becomes
zero, is to be understood as following the sign of w, i. e. as positive when w is 1 and
negative when w is —2. | '

(84) The method above given for ascertaining the nature of the roots of a quintic
involves the use of only three criteria. It may be inquired how many would become
needful in applying SturM’s method. In the case of a cubic equation only the last of
the two Sturmian criteria comes into use; and it seems therefore desirable to ascer-
tain whether all four of the Sturmian criteria applicable to that case are required, or.
whether a smaller number are sufficient. I speak of four criteria, inasmuch as the lead-
ing terms fz and f'» cannot be considered as such, their signs being fixed; so that we
are at liberty to consider them both positive. Suppose all six Sturmian functions to be
written down, including f& (a function of a of the fifth degree) and f'x, and let us cha=
racterize by the index (r, s) any succession of signs of the leading coefficients which con-.
tain » continuations and s variations, and which therefore will correspond to the case of
(r—s) roots. ,

The total number of cases to be considered are the sixteen following :

G0 + + + + + +
+ 4+ + + + -
sy o =+ = =

4; 1) 4 ,

Gy vy - - -
L+ + - = = =
(+ 4+ + + -+
+ + + -+ +
+ o+t - =

(3"2)‘+ﬂ+’-—, + + +
O+ - = 4+
+ T+ - = =+
+ 4+ 4+ -+ -
1+ + - + + -

2, 8)1 : A

(’),+ + - + = =

| + + - - + -

L4 + + - + - +

the successions corresponding to the indiees (2, 3), (1, 4) will become impossible, as.
corresponding to a megative number of real roots. An inspection of the eleven cases
corresponding to the indices (5, 0), (4, 1), (8, 2) will show that no ¢ernary combination.
of signs in the third, fourth, and sixth columns belongs to any of the three characters
(9,0), (4,1), (3, 2) exclusively, and consequently all four signs must be used; and there-
fore, if the method of SturM is employed, four criteria are indispensable for determining
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effectually the character of the roots in an equation of the fifth degree(*); whereas in
the symmetrical and invariantive method which I have employed three have been seen
to- suffice.

In an equation of the seventh degree the case of 0 or 4 will be distinguishable from
that of 2 or 6 imaginary roots by the sign of the discriminant, and then again the case
of 0 from that of 4, and of 2 from that of 6, by other invariantive criterion-systems. So
for an equation of the ninth degree, the first separation will be that of the 0, 4, or 8
case from that of 2 or 6; then it may be conjectured the 2 case will be invariantively
separated from the 6, and the 0 or 8 from that of 4, and, finally, 0 and 8 from each
other—the reduction of cases apparently depending upon the relation of the index Of
the equation to the powers of the number 2. This much we know (from art. 49) as
matter of certainty, that no single criterion other than the discriminant can ever serve
to distinguish one form of roots from another so that all other criteria must accom-
pany each other in groups; and accordingly the scheme of criteria established in the
foregoing investigation is in kind the very simplest & prior: conceivable.

(*) (*) For an equation of the nth degree there are n—1 variable criteria, each capable of being + or —, and
thus giving rise to 2»—1 conceivable diversities of combination. The actual number possible, however, is consider-

I(n—1)

ably less than this; and I find by an easy method that 'this number, when # is odd, is 27-2+ -, and

1
I(n—1) 2(H _2_-)

o)

(*) Not quite foreign to this subject is the inquiry as to the comparative probability of each different succes-
sion or each different family of successions possessing equivalent characters; and, as connected therewith, the
comparative probability of a certain specified number of the roots of an equation of a given degree being real
and the remainder imaginary. TIn the simplest case of a quadratic equation of which the coefficients are real
“but otherwise arbitrary, I find that upon the particular hypothesis of the squares of the three coefficients being
31 log2

limited by one and the same quantlty, the probability of the roots being imaginary is 7 R TR r -3727932,

a little less than £, this being the value of the integral‘f dbfﬂda(l—af); but we are not at liberty to infer
0o Jo

when n is even, is 2n—24-

from this the value of the probability in question when the coefficients are left absolutely unlimited. A case
in point, as illustrating the effect of imposing a limit in questions of this kind, occurs in the problem (which I
raised in my lectures on Partitions) of finding the probability that four points placed at hazard in a plane will
form the angles of a reentrant quadrilateral, which Professor Cavrey has shown is exactly 1 in the absence of
any limit. - For if ABCD be the four points, and ABC the greatest of the four triangles of which they may be
regarded as the angular points, and if through A, B, C be drawn lines paraﬂel to BC, CA, AB respect'ive’iy, the
triangle afy so formed will be four times as great as ABC, and the point D must be somewhere within a8y,
otherwise ABC would not be less than each of the three other triangles ABD, BCD, CAD; and consequently,
since D must lie within ABC when the quadrilateral is reentrant, the probability in question is A-BE, or .

afy

Now it is easy to see, by using the very same construction, that if any contour whatever be imposed as a limit
upon the positions of the four points, the probability referred to will exceed } by a finite quantity—a result
somewhat paradoxical, since @ priori one would have supposed that the value of it for the case of no limit would
be the mean of the values corresponding to the respective suppositions of every possible form of limit.

482
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Received December 8, 1864,

Note on the arbitrary constant which appears in one of the criteria for distinguishing the
case of four from that of no imaginary roots, and on the curve whose coordinates ex-
press the limiting relations of all the octodecimal invariants of a binary quintic, &c.

(85) The appearance of an arbitrary constant in a criterion is a circumstance so unex-
ampled and remarkable that I have thought it desirable to give a more complete, or at
least a more palpable proof of the validity of the substitution of A+4wJD for A than
that furnished in the foregoing text, where some indistinctness arises from the diffi-
culty of raising up in the mind a clear conception of the form of the amphigenous
surface, and the two portions of space which it separates. That difficulty is entirely
obviated, and the theory rendered palpable to the senses by the following investigation,
where the problem is so handled as to involve the contemplation of two dimensions only
of space. 'We have in general

D=J2—128K, A=2048L—J%,
and at the amphigenous surface (see art. 67)

K_ ¢+6 L 1
T (4+4) P (0+4)0

Let
D A
0=4¢’ y:TQ, x=§§.
Then
_ i+6 8e+12 _ (p+2)%(p—3)
y=1=128 7 gp=1= 2(¢+1)" Flot+D)
2048 —(¢+2)(¢3—¢2+2<p—4).
=—lt+grgp=— 1"'4» e P+ ’

and consequently
e +2)(p+3)
Plo+1) 7
2, y may be considered as the coordinates (inclined to each other at any angle) of a curve
of the fourth order, whose form, so far as is essential to the object in view, I proceed to
determine. It is obvious, furthermore, that this curve will be a section of the amphi-
genous surface made by the plane J=1.
(86) This curve will be seen to consist of four branches, coming togeth’er in pairs or
~ two cusps, so as to form two distinet horns(¥). For when ¢=o0, or p=—3%, 3, oz will

__ 8(4p+3) d_ ¢+2,
S UL T

IR B
LT A
we sce at once, from DrscarTes’s rule, that ¢ can never have more than two real values to one of I%a’ or con-

(%) (*) Since

sequently of «, and consequently there can only be two values of y to each of .

(*) When J=0, the cusp of the left-hand horn and the two points of intersection of the dexter horn with
the axis of L coincide at the origin ; the upper branch of the latter and the linear of the former become the
lower and upper parts of the axis of D, whilst the lower and upper branches of the same respectively become
the left and right-hand branches of the semicubical parabola 27,22 L= —
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each of them be zero. Hence there is a cusp at the point where 2=—1, y=1(%), and

again at the point where
8 x 256

o= 14 X0 7633, g=@ o5
81—108~ R ER

(87) When ¢=0, and also when ¢==—1, # and y each become infinite ; when p=-4c0,
x and y each become unity.

As ¢ passes from 4-o0 to 0, 9y is always negative, and & always positive; so that there
will be one branch of the curve (CMP in Plate XXYV.) extending from z=-—1 to
g=-w, for which y commences at y=1, which cuts the axis of # when ¢=3, i. e.
x=—%%("), and which, for the remaining part of its course, lies completely under the
axis of &, becoming infinite when 2 becomes indefinitely great.

Again, as ¢ passes from —oo to —1, 8 remains always positive, but dy is negative so
long as @< —2 vanishes when ¢=2, and ever afterwards continues positive. Thus

“there is a second branch, COQ, which starts from the cusp C, touches the axis of 2 at
the origin, ever afterwards remaining positive, and increasing up to positive infinity.

. 3
Since when ¢p=w, ay_oo the tangent at Cis parallel to the axis of 7, and conse-

quently the two branches which start from C lie on the same side of the tangent, so
that the cusp at this point is of the second or ramphoidal kind ; in Professor CAYLEY'S
nomenclature a cusp-node, and equivalent to the union of a double point and a cusp
of the first kind. '

There remains to account for the values of ¢ in the interval between 0 and —1.

Throughout this interval y and 2 remain both of them negative, and §z= ——ﬁ%‘—'ﬁ (°%%)
is always positive.

There will thus be two branches, in each of which & and y increase s1multaneously
in the negative direction, coming to a cusp necessarily of the first kind at the point
2=—"T06%3, y=—25, one branch corresponding to the values of ¢ from —3 to 0, the
other to the values of ¢ from — 2 to —1, both of them lying completely under the axis
of #, and becoming respectively infinite at the extreme values of ¢ (0 and —1).

) Where this branch cuts the axis of y we have ¢*—p*4-2¢ —4=0, of which the real root Will be a trifle
less than 2.

() From this it is easily seen that, whatever may be supposed to be the inclination of the axes @, ¥, the
curve in question is rectifiable by means of elliptic functions; for Eld% will be expressible as a rational function of

¢ and the square root of a quartic function of ¢. The same conclusion will hold for the curve obtained by
making J constant when J, together with any invariant of the eighth and any of the twelfth order, are taken as
the coordinates of the amphigenous surface. ‘ ”
(®) To ascertain which range of ¢ gives the superior and which the inferior outline of the sinister hoth,
let p=¢, an infinitesimal ; then ¢*+¢°=¢", and the other value of ¢ is —1—2, where y=¢*. Hence the two
values of 4 corresponding to ¢ nearly zero and ¢ nearly —1 respectively will be

12e__ 12 —4(—1—7)_4
h=——=—7 and y_—(_?_._")—).=?.

Thus y1 is negative for e positive or negative, but y, is positive in the one case and negative in the other, as
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Again, S
2y—w+5=¢‘ii§3x((2¢”—2¢2+2¢)+(¢“'—¢2+2¢—4))+5
2 8¢°—16p—8
‘P'I' (3¢ — 69— 4)_}_5_1_?_9__

Hence when ¢=—1, for which value of ¢ 2 and y both become infinite, 2y —2+5=0;
hence the straight line 2y—a+45=0, represented by AN in the diagram, will be an
asymptote to the curve (™). '

If now we draw the straight line 2y—2=0, represented by OB in the figure and join
OC, the curvilinear triangle OCM will be completely under OC, and the curvilinear
infinite sector XOP completely under OB.

(88) What we have to prove is, that so long as w lies between 2 and 1, so long may
A+uID be substituted as a criterion in lieu of A, it being remembered that A only
plays the part of a criterion when D is positive and J is not positive. Hence, since when
J=0 A4pJD and A coincide, we have only to show that, so long as D is positive and
J is negative, A4uJD and A will bear the same sign for all such values of J, D, L as
constitute a facultative system, . e. coordinates to a facultative point in space.

- Now at any facultative pomt G (the function of the amphigenous surface) or say

~ rather G(J, K, L)>0, or F‘G<1, })2 L) >0, and- consequently consuiermg 2 ;-Ilféas
‘the coordinates of a plane curve, the line G(l, -}%, Jl—‘g) =0 (the sign of J being fixed)

will separate those points for which J, K, L constitute a facultative system from those

already seen for the dexter horn.” We see also. that y, becomes indefinitely greater than v,, so-that it is the
value of ¢ near to —1 which glves the inferior branch ; and consequently the supenor branch of the sinister
‘horn belongs to the range from —# to 0, and the inferior to the range from —% to —1.

(*) It may further be noticed that each horn so called is a true horn, being destltute of any point of contrary
flexure, except at infinity ; for otherwise we should have

dy
dy_dp & __( 1=+
B de qo = de'? 8(dp+3)" "

which implies =0 or ¢=—1, for each of which values of ¢ x and y become infinite. It will be seen here-
after that it is only for the value corresponding to =0 that there does exist-at infinity a point of inflexion.
(™) The two points where the asymptote cuts the curve will be found by writing

P21

a1 P eml=0

which gives
1+ 5

p=—5
‘The superior sign corresponds to a point @, y in the inferior branch of the dexter horn, and the lower sign, for
which ¢>—32, to the superior branch of the sinisterhorn. It is easy to see that there can be no other asymptote;
for @, y only become infinite when g==—1, or ¢=0; so that if Av+py+v» is an asymptote, it must contain
(p+1)% or ¢* as a factor. The first condition is only satisfied when A:w:v :: —1:2:5; and the latter cannot
be satisfied at all.
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in which J, K, L constitute a non-facultative one. - But the curve above traced is obvi-

ously a homographic derivative of that line <for G is the resultant of 'E, ( 66:4(;5.7"
LI
F*(W)'
Hence this latter curve will also separate systems of values of J, D, A corresponding
to facultative from those corresponding to non-facultative points. Moreover when J is
negative and D positive, it has been shown (see dial figure) that the values of D (in
facultative systems) corresponding to finite values of J are limited in magnitude; hence,
upon the same suppositions, facultative systems of J, D, A will correspond to the inte-
rior and contour of the curve we have been considering. :
(89) Accordingly, since D is supposed positive, our sole concern will be with the
curvilinear triangle CMO and the infinite sector QOX, and we have to show that for all
points not exterior to those areas A and A4JD have the same sign; that is to say,

1+//J%—), or 14p % is positive.

When y and 2 have opposite signs (as is the case in the triangle CMO), all negative
values of w, and when 7 and z have the same ﬂgns (as is the case in the sector XOQ)o-
all positive values of w obviously malke 1—[—(,0 p0s1t1ve But farthermore ¥ = which is
—1 for the line OC, is greater than —1 for all points in the triangle just named; and
again, %, which is § for OB (the parallel to the asymptote through O), will be less than £
for all points in the sector QOX. Thus, then, as regards points either in the triangle or

in the sector, % is always intermediate between —1 and 3; so that when w lies between

1 and —2, 14 % will be always positive, and A and A'+‘wJ D will bear the same sign O,

so that A+pJD may be used to replace A as a criterion. Q.E.D.

(90). It is apparent from the nature of the preceding demonstration that A may be
replaced by an invariant containing not one merely, but an infinite number of arbitrary
constants (limited), provided we are indifferent to the degree which the substitute for A.
may assume. To this end we have only to draw any algebraical curve F(z, y)=0 passing
through the origin, and with its parameter subject to such conditions of inequality as
will ensure the mixtilinear triangle and sector COM, XOQ lying on opposite sides of
the curve. If its degree be m, the number of parameters in F left arbitrary within

e an ,
limits will be ﬁi%u, and ¢F(A, JD), where ¢ means one of the two quantities +1 or —1,

may be used as a criterion in lieu of A. - For instance, a common parabola with its axis
coincident with that of 2 and passing through O will obviously serve as a screen between
these figures ; its equation will be y>—2=0, and the invariant D*—~J A, which is of the
sixteenth degree in the coefficients, will serve together with J and D to fix the nature of
the roots; so in general we may obtain invariants of any degree of the form 4¢ from twelve
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upwards. Thus M. HERMITE, by a method not introducing the notion of continuity, has
found one of the twenty-fourth degree, which he has been so obliging as to communi-
cate to me, viz. (D,—6AJ,)+4(9D—25A%J}, where D,=16J;,-425AJ,; and D is his
discriminant, which I cannot safely attempt to express in terms of #, y for want of
a certain knowledge of the arithmetical relations between his A, J,, J, D, and my own
J, K, L; but were this transformation effected, the curve so represented must, ex neces-
sitate, pass clear between the triangle and sector above referred to, or else the invariant in
question could not be a criterion. I have ascertained without difficulty that it passes
through the origin and represents one of the principal species of NEwToN’s diverging
parabolas.

(91) The curve which we have been discussing will, on reference to PLicKER’s ¢ Alge-
braischen Curven,” p. 193, be seen to belong to his sixteenth species of curves of the
fourth order having two double points; but as in reality one of these is tantamount to
the union of two, it may be considered as having three, the maximum possible number
of such points, and consequently comes under the operation of CLEBSCH’S rule, given in
the last Number of CRELLE’S Journal, and accordingly its coordinates have been seen to
be rational functions of a single variable. The equation connecting #, ¥ may of course
be obtained by means of a simple and obvious substitution operated upon the G of
art. 41, or it may be found directly by writing

atl_, 1 y=l_ __ 2+3
8 T STt 4 1T T gye?

whence we obtain

1
Pe—g=0, . . ... RN ¢
2¢2+3¢+§=0..............(2)

Calling 9,0, the two roots of equation (2), making
1 1
(et+ei—g ) (t-+0t—F) =0,

and substituting the values of the symmetric functions of ¢,, ¢2 found from the same
equation, we obtain without difficulty '

=&’ — 88"+ 8657+ 168— 278 =0

for the equation in question. The curve thus denoted I propose to call the Bicorn.
Its figure is given in Plate XXV., in which &, 7 are taken at right angles, but they may
of course be supposed to be inclined at any angle whatever. If we now assume at
pleasure any two new axes U, V in the place of the Bicorn, the coordinates u, » will be
always respectively proportional to two invariants of the twelfth order of the given
quintic, whose particular forms will depend upon the positions of the two new axes so
taken. If one of these axes, say that of u, be made coincident with the axis of &, » will
be proportional to JD, and % to some other invariant of the twelfth degree. When
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this is the case, then in general v, as % travels from one end of infinity to the other,
will sometimes have four, and sometimes two, or else sometimes two and sometimes no
real values, as will be obvious by inspection of the figure. There is, however, one
direction of the axis of v which will cause v in all cases to have two, and only two real
values. This direction is that of the line joining the two cusps. At the node-cusp, for

which ¢=co, £=0, »=0; at the other cusp, for which p=—%, £=—258 y=—32
. C . .. _a K__n L__ ¢
Hence the equation of the joining line is 9 —87=0. Now = ""35 Far¢ Hence

along this line 9L4JK=0; and consequently, if the axis of v be taken parallel to this
line and passing through the origin, whilst » is proportional to 9L-+JK, v will be pro-
portional to JD; and thus we see that for every value of 9L4JK, which is HERMITES
J; (see foot-note (**)(¢)), D at the amphigenous surface (¢. e. when G=0, and therefore
when HErMITE'S I=0) will always have two, and only two real values. This perfectly
agrees with M. HErMITE’S conclusion (™), and in an unexpected manner confirms the
correctness of the concordance established, in the foot-note cited, between his J, and
my J, K, L. Had M. HerMITE employed any duodecimal invariant whatever other
than J,, a mere inspection of the Bicorn shows that a similar conclusion could not have
obtained.

(92) The intersections of the curve whose equation is written in the preceding article
with infinity evidently lie in the lines =0, —£=0. This latter is the equation
to a line parallel to the asymptote which touches the highest and lowest of the four
branches of the curve, and corresponds to the value —1 of ¢. Thus we see that there
is a point of inflexion corresponding to the point at infinity at which the second and
third branches of the Bicorn may be conceived to unite. It is easy to show that the
Bicorn has no double tangent; for we have seen that

dy__ 9+,
dx 2
and consequently the values of ¢ corresponding to the two supposed points of contact
may be regarded as the two roots ¢,, ¢, of the equation ¢*42¢+21=0, and we shall have
_2,+3 2¢Q+3_7\< e 2 )
PRl e \Aitel ete)’
6. 6.— (20,1 3)(03+3) + (20, 3)(¢1+01)=(p3+¢3) — (p1+0.)"s

40 (—2)+ 4h+ 3(4—20)+6(—2(4— 41) - (4—24)) =0,

or

or
(—8+4—6+8—2)+12—6—8+44=0,
i. 6. —4a+2=0, A=}, ¢*+20+1=0,

and the two values of ¢ coincide, contrary to hypothesis.
It is also easy to find its class; for when g—z'. corresponds to any point in which the

(™) Lemma 3, p. 202, Cambridge and Dublin Journal, vol, ix,
MDCCCLXIYV. 47
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curve is met by a tangent drawn from the point whose &, 5 coordinates are @, b, we have

20+3 1 Q.
(?3+¢2+b)+d5<¢ e “)“0’

but
dh
d?;'— dw—""‘(ﬁb +2¢)
hence
2 3 2
Le+9= 02D 4 (¢+20)at5=0;
hence

o' +2a0°+bp’+1=0;
and ¢ having four values, four tangents (real or imaginary) can be drawn to the Bicorn
from every point in its plane. It is thus of the fourth order, fourth class, possesses a
common cusp and a cusp-node, no double tangent, and one point of inflexion at infinity:
These results accord with those given by PLucker (Algebraischen Curven, p. 222).

(93) The canonical form of the equation to the Bicorn is (pr+¢*)+pg*=0, as seen
in PLUCKER, p. 193, where p=0, r=0, ¢=0 will obviously be the equations to the
tangent at the node-cusp, to the tangent at the common cusp, and to the line of junction
of the two cusps. This leads to a remarkable transformation of the invariant G of
art. (41). Thus we may write p=E, g__(x,(% 84); and to find », we must draw the
tangent to the lower cusp, for which ¢=—%, which gives

256 32 dy
g-—-—- 27 _77:—'5', —Jé=_i§(72);
consequently we may write r=a(144y—135£+256), and then proceed to satisfy, by
assigning suitable values to A, w, », the identity
(M1449E—185£°4-256) +ps*(8r— 9E))* + wE(81— 96
=y(r*—7*E—8E+ 364+ 166 — 27E%) =v . 27G.
On performing the necessary calculations it will be found that

NS DR | _ 1.
_—— 2-T2’ ‘UJ— ‘ES, v—-g—l-é
Hence we see that J*G may be expressed under the form (LL, 4¢J3)*+¢LJ3, where L,
is a new duodecimal invariant, and ¢, ¢ are two known numbers; in fact
JG= (L(18JK+'135L2 J* L)+ (JK+4 9L)“’)2+64L(JK+ 9LY.
I am indebted to my friend Dr. Hirsr for these references to the immortal work of
PLUCKER. '
(94) The existence has been demonstrated of a linear asymp’bote which is a tangent
(™) Ifind, by a calculation which offers no difficulty, that the value of ¢ at the point where this tangent cuts
the curve will be given by the equation
—256p'—256¢°+288¢°+432¢+135=0;

and taking away the faetor (4¢4-3)* which belongs to the cusp, there remains g=4%, which corresponds to a
point in the lower branch of the superior horn.
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at infinity to the first and fourth branch. A cubic asymptote touches the intermediate
branches in the point at inﬁnity corresponding to ¢=0. For we have

E= 8(1_|_q, 2( —p+0"—0"....);

and writing v for —»,

_ 342 _(
= l+e)

, 3% s 3% 3 .13, 2
v=;( ¢+ ) V= ?(3_5@4—?@ 1ng )

Hence we may determine

A, B, C, D so that Av*4-Bv+Cv* 4D —§ shall =re"+pa'+....,
and I find

—o+0—¢°....),

_1, B——l, o=l, p=_2
A-_?;}a B= 6’ _72 D= 5

Thus the cubic asymptote will have for its equation

(é+év+ 5) =30 (5+7)

which is a divergent cubic parabola,.with a conjugate point, viz. the point for which

v==g  Etgotg=0, ora=gp  E=—gp

(95) It is obvious from the preceding article, that we may expand & in terms of v by
the descending series

£=Avt 4B Ot 4D 2 4 ...

But we may also obtain an ascending series for £ in terms of » which will exhibit the
nature of the curve of the cusp-node at which point = oo. Let @:i, then

1

~ e+, )‘m— (—ota'=o...)

2043 243w . .
) T (1+w> =w'(2+w—a"+a*.. ).

Hence
Voe(ibe—tir %)
. ~v§r—_‘-w4( . 4\/§@+5~/§w2_‘_%\/§w3 ),
. v? =0)4( 80)2+ 120)3 L ),
'U'Z'_=w4( \/ﬁws Cen ),
&e. =&e.

412
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from which we may easily deduce

=2 ()~ 41 -2 o

in which it will be observed that the indices of the powers of v are precisely comple-
mentary to those in the preceding expansion, the two series of indices together com-
prising all multiples of { from positive to negative infinity.

(96) We now see how, supposing the curve to be given with & and 7 at any angle,

the axes corresponding to ;I[i, ;; may be defined : viz., the origin of coordinates will be at

the cusp-node ; K along Whlch LY , 1s reckoned, will be in the direction of the tangent at

that point; and &, along Wthh 5 is reckoned, will be the axis of that common parabola

which at the same point has the closest contact with the given curve.

It seems desirable, with a view to a more complete comprehension of the form of the
amphigenous surface, i. e. the limiting surface of invariantive parameters, to ascertain
the nature of the systems of plane sections of it, parallel to each of the three coordi-
nate planes. The sections parallel to J, which are curves of the fourth order, have
been already satisfactorily elucidated. It remains to consider briefly the sections parallel
to J and D, which will be curves of the ninth order.

(97) When L is constant, writing J=2, D=y, where for facility of reference we may

conceive y horizontal and z vertical, and making L=5zz, we have

2=k (p+1), y=2" (p+2)*(p—3) = (p—3)(p+2)?

¢°1+e) T (1+e)p
if/___% (p—1)(4¢+3) %, Sz 1 4943 %, 8z__1 . (p+1)% b,
Yy 3(+2)(e—3)e+1) “3e(e+1) By 2k (p—1)(p+2)
when ¢o=—1 z= 0, gy= o,

» o=—%, = 0, oz= 0,

» o= 0, 2= 0, y =—12%%,

» P= ]-a %Z= 0,

5y Q=+, z =40, y=+oo,

b}
FT ¢=_27 y= O, §§= ®0,

” . p=—cx, 2 =-4ow, y=+4w0.

Hence it appears that the curve consists of three branches, two coming together at
an ordinary cusp at the point corresponding to ¢==—32, and the third completely sepa-
rate. The nature of the sign of £ does not affect the nature of the curve. If, for
greater clearness, £ be supposed positive, the first branch, having the negative part of
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the axis of y for its asymptote, lies entirely in the —y, —z quadrant, and is always
convex to the axis of y; the second branch, joining the first at a cusp corresponding to
¢=—4%, is concave to the origin, cuts the axis of y negatively and of z positively, and
goes off to infinity; the third branch, having the positive part of the axis of y for its
asymptote, lies in the 4y, 42 quadrant, is always convex to the axis of z, which it
touches at a point below that where it is cut by the second branch, and also goes off
to infinity, lying entirely under the second branch. A straight line, according to the
direction in which it is drawn, may cut the curve in one, three, or five real points.
(98) When D is constant, writing J=z, L=x, we have
P¥p+1) Dz
#=Dorore—9 TTl—ueerar
The form of the curve changes with the sign of D. For sections parallel to and above

the plane of D, we may make
3241,

D=¢, 7‘2=;:"_1, or p=

3 72—1"
then the complete equation-system to the curve will be
35241 (2 —1)
z=cr

—_— —_—Bg N T/
1" TEOT R

it being unnecessary to affect ¢ with a double sign, since z and # change their signs with
that of 7.

Also
dz__ (*4+1)(1572 4 1) 8z (°—1)(157%+1)3r
2z T(@=1)(612=1) ’ z 7324 1)(6r°—1)’
B (1) 1572+ 1) (12— 1) (152 41) (1)
5.4,—4 (512__])4 B‘f, B.Z—-G"—(‘B?Q:i“)‘g‘— 5_1',

fa_ & (PB4 1)1
w4 (pr—17
To the values of = included between ++/% and —+/% will correspond one branch of

the curve passing through the origin, where it has a point of contrary flexure, and
extending to infinity in both directions.

When (57°—1) is positive -:_i is always positive; and when +°=1,
3z

dr=0, dz=0, 55=0.
. 4

Hence there will be a cusp of the second kind when #=0, z=+-¢, the axis of z being
a tangent to the curve at each cusp. One pair of branches has its cusp at the point
2=0, z=c¢, and the values of , z increase indefinitely in the respective branches as ¢
passes from 1 to +oo and from 1 to o/T. This pair lies in the +2, +2 quadrant, and
there will be a precisely similar and similarly situated pair in the —&, —z quadrant.

Thus there will be in all one infinite {-formed branch passing through the origin, and
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two detached pairs of infinite branches lying in opposite quadrants(™). . The value ¢ for
+% it will of course be seen, corresponds to —2 for ¢, and gives, as it ought to do, the
position of the cusp.

(99) Finally, for sections parallel to the plane of the discriminant and lying below it,

makiﬁg D=-7, = L +:, we obtain in like manner

-1 (1) br_ (A=1)(156—1) _ (+)(5e—=1)
2=Ha1 -ﬂ+ 1 =PGRS Er ) eer T EE—1) (e 1)
o= k3 E-DAsE=DE+1P k(lfiﬂ—mz_?_ﬂ) e R (A—1)(241)?
= — (5t*+l) ’ = (5t2+ 1) ) g_ZW
‘When #=+ there will be an ordinary cusp, and when #’=1, b‘_=0

* There will therefore be three branches,—one corresponding to the values of ¢ between
—&/ 2 and 4/, the other two to values of ¢ between these limits and — and +
infinity respectively. The middle branch passes through the origin, where it under-
goes an inflexion, and comes to a cusp at a finite distance from the origin in two
opposite quadrants. The connected branch at each cusp crosses the axis of &, sweeps
convexly towards the axis of z, arrives at a minimum distance from it, and then goes off

to infinity.
" The value % for #* corresponds to —% for ¢, and gives, as it ought to do, the cusp-
node. In fact the values p=—2, p=—2 correspond respectively to a cuspidal and to

a cusp-nodal line in the limiting surface whose sections we have been considering.
‘When the cutting ‘plane is that of D itself, the section becomes a double cubic para-
bola and a single cubi_cal parabola crossing each other at the origin.

(™) Let £ be an infinitesimal, and §*=1+¢; then

4 (445s
b= 22 - ))23
Hence at either cusp the branch the further removed from the axis of # corresponds to the values of §* be-
tween 1 and oo, and the infetior branch to its values between 1 and 1; so that the order of continuity of the
five branches of the curve may be read as follows :—from the infinite pomt in the higher branch of the upper
pair to its cusp; thence to the infinite point in the connected branch, which is contignous to the infinite point
in the opposite extremity of the middle branch; thence along this branch to its contrary infinite extremity ;
thence to the infinite point i in the upper branch of the inferior pair ; along that branch to its cusp ; 5 and thence,

finally, along the lower branch to infinity.

= (1-|—2&)—5-a—9.
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DESCRIPTION OF THE PLATES.

PLATE XXIV.

The (¢, 7) equation is (1, ¢, ¢*, #°, 7, 1Y, )*=0, of which two roots are always imagi-
nary; its extreme criteria are O 0; its middle criteria & —ez?, #*— 7e?,

| p=er—1, o=(F—r)#—r).

Points (p, o) above the discriminatrix indicate 2 pairs of associated roots in the (¢, 7)
‘equation.

PointS‘( p, o) on the discriminatrix indicate 2 equal roots in the (s, #) equation.

Points (p, ¢) under the discriminatrix indicate 3 solitary roots in the (¢, ) equation.

Points (p, o) above the equatrix indicate ¢, 4 real and unequal.

Points (p, ¢) on the equatrix indicate ¢, » equal.

Points (p, ¢) under the equatrix indicate ¢, » imaginary and conjugate.

Points (p, o) above the loop of the indicatrix indicate middle criteria not both positive.

Points (p, ¢) on the loop of the indicatrix indicate middle criteria of opposite signs.

Points (p, o) under the loop of the indicatrix indicate middle criteria not otk negative.

The discriminatrix is a closed curve, the whole of which is figured on the Plate, and
is shaped somewhat like a harp: it has a cusp of the fourth order at the origin.

The equatrix consists of two branches coming together at a cusp at the distance 1
from the origin; the upper branch touches the horizontal axis at the origin; the lower
branch, after touching the discriminant at a single point, sweeps out from and round it_;
cutting the vertical axis at the distance 4 below the origin. Both branches go off to
infinity to the right, and lie completely under the horizontal axis. Where the lower
branch touches the discriminatrix, the discriminant of the (s, 7) equatlon passes through
Zero without changing its sign.

The indicatrix consists of a single branch extending mdeﬁmtely in both du'ectlons
It passes from infinity below and to the left until, at the distance 1 from the origin, it
touches the axis, which at the origin it crosses at an angle of 45°, after which it goes off
to infinity in the positive direction. TIts loop extends from p=0 to p=—1. The two
portions of it figured in the Plate join on together, coming to a maximum at a greaﬁ
distance below the horizontal axis. The narrow tract marked ¢ Region of Real para-
meters ” is that portion of the harp-shaped space for which alone, ¢, 5 being real, the
(¢, 7) equation can have more than one real root. The areas of cach of the three regions
into which the discriminatrix is divided by the equatrix and indicatrix may readily be
expressed numerically in terms of algebraic and inverse circular functions only.

I am indebted to Gentleman Cadet S. L. Jacos, of the Royal Military Academy, for
the tracing of the curves of which the above Plate is a somewhat imperfect reproduction. -

PLATE XXV,
Described in text, p. 658.
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6. On the reduction of the general equation of the ﬁfth degree to 1ts ca,nomeal form PR 1 EE 3
7. Geometrical representation of the mutual limitations of the basic invariants of Quintic forms,

and of the cause of the absence of the same for Quartic forms ........... ceerveeneenn 4554
8. On the invariantive criteria for determining the nature of the roots of such equa‘mon ............ 55—74
9. On an endoscopic representation of the above criteria............ v 75—83

10. Geometrical determination of the arbitrary eonstant (hmlted) of the thlrd cnteuon by means of
one of the principal sections of the limiting surface of invariants ..........cveeiiiiiieniienn.. 8488
11. On the forms of the other principal sections of the same ...vcevvvuneieiiieiiiiiiiiieniiiniiinn, 89 to end.

SUPPLEMENTAL REFERENCES.

Proposed new reduced forms for binary quartics and ternary cubics (note ).

Theorem on the imaginary roots of odd-degreed equations (note ).

Concordance between HrruITE’S invariants and those of the memoir (note ),

Identification of the latter with the corresponding numbered Tables of Professor Cavrey (note * (*) and (V)).

Proof that every invariant of a quintic is a rational integral function of the four basic invariants (note %),

Invariantive conditions for certain special forms of quintics (note ).

Conditions necessary in order that an infinitesimal variation of the coefficients of an equation may be accom-
panied with a change of character in the roots (note *).

ScrLArrr’s theorem (proof and extension of ) (note ).

‘On a number of cases capable of arising under Sturm’s theorem, and on certain questions of probability (note ).

All the invariants of a binary form vanish when more than half the roots are equal to one another, art. 48.

Tdentification of section of limiting surface of invariants as a variety of the sixteenth species in PLickER’s enume-
ration of quartic curves with two multiple points, art. 92.
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